Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Infect Dev Ctries ; 18(1): 27-33, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38377088

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19) has infected millions of people globally. Many recent studies have suggested that the ABO blood type may contribute to COVID-19 infection immunopathogenesis. We aimed to determine the proportional distribution of COVID-19 infection among ABO blood types. METHODOLOGY: This retrospective research was conducted in the city of Jodhpur (Rajasthan), India. The research involved 1140 COVID-19 patients, whose medical records were available in blood banks. The data was evaluated statistically using IBM SPSS 26. RESULTS: The proportion of blood group B among infected patients was highest (37.36%). Among all the cases, blood group A had the highest odds ratio of 1.062 (CI 95%, 0.92-1.21, p = 0.412). All versus one blood group analysis also showed that blood group A (odds ratio = 1.062 [CI 95%, 0.92-1.22] p = 0.412) was more likely to be infected with COVID-19 than the remaining blood groups. In the year 2021, blood group B had the highest risk of COVID-19 infection (odds ratio = 1.138). CONCLUSIONS: Based on our findings, the blood groups A and B are more likely to be infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The overall average age for COVID-19 infection was lower, and the number of incidences in female patients was higher in 2021, relative to 2020. We found no evident relationship between COVID-19 vulnerabilities and blood group. A summary of the research is presented in Supplementary Figure 1.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Feminino , COVID-19/epidemiologia , Estudos Retrospectivos , Sistema ABO de Grupos Sanguíneos , Índia/epidemiologia
2.
Future Microbiol ; 18: 323-334, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140267

RESUMO

Background: The present study evaluates the efficacy of bacteriophage therapy for urinary tract infection (UTI) in rats. Methods: UTI was established by inoculating Escherichia coli (100 µl) at a concentration of 1.5 × 108 CFU/ml per urethra via a cannula in different groups of rats. For treatment, phage cocktails (200 µl) were administered at varying concentrations of 1 × 108 PFU/ml, 1 × 107 PFU/ml and 1 × 106 PFU/ml. Results: The two doses of phage cocktail at the first two concentrations resulted in the cure of UTI. However, the lowest concentration of the phage cocktail warranted more doses to eradicate the causative bacteria. Conclusion: The quantity, frequency and safety of doses could be optimized in a rodent model using the urethral route.


Antimicrobial resistance is primarily caused by antibiotic overuse and misuse, which results in a decline in the ability of antibiotics to treat infections. Urinary tract infections (UTIs) are common but difficult to treat, as they are frequently caused by multidrug-resistant bacteria. Escherichia coli is a common cause of UTIs. Bacteriophages are a potentially viable alternative for the treatment of bacterial infections, and despite the numerous benefits of using phages as antibacterial therapeutics, there are surprisingly few original research articles based on clinical trials, specifically against UTIs. In this study, the efficiency of a customized bacteriophage cocktail for the treatment of UTIs, with varied doses administered directly into the urinary bladder of rats, was evaluated. At higher concentrations, UTIs were completely eradicated after two doses of the bacteriophage cocktail. However, at lower concentrations, additional doses were required to eradicate the infection. Phage therapy appears to have therapeutic potential, and this study indicates the potential frequency of dosages at appropriate concentrations. Phage therapy was both effective and safe.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Terapia por Fagos , Infecções Urinárias , Escherichia coli Uropatogênica , Ratos , Animais , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/tratamento farmacológico , Antibacterianos/farmacologia
3.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985795

RESUMO

The terms discussed in this review-biosurfactants (BSs) and bioemulsifiers (BEs)-describe surface-active molecules of microbial origin which are popular chemical entities for many industries, including food. BSs are generally low-molecular-weight compounds with the ability to reduce surface tension noticeably, whereas BEs are high-molecular-weight molecules with efficient emulsifying abilities. Some other biomolecules, such as lecithin and egg yolk, are useful as natural BEs in food products. The high toxicity and severe ecological impact of many chemical-based surfactants have directed interest towards BSs/BEs. Interest in food surfactant formulations and consumer anticipation of "green label" additives over synthetic or chemical-based surfactants have been steadily increasing. BSs have an undeniable prospective for replacing chemical surfactants with vast significance to food formulations. However, the commercialization of BSs/BEs production has often been limited by several challenges, such as the optimization of fermentation parameters, high downstream costs, and low yields, which had an immense impact on their broader adoptions in different industries, including food. The foremost restriction regarding the access of BSs/BEs is not their lack of cost-effective industrial production methods, but a reluctance regarding their potential safety, as well as the probable microbial hazards that may be associated with them. Most research on BSs/BEs in food production has been restricted to demonstrations and lacks a comprehensive assessment of safety and risk analysis, which has limited their adoption for varied food-related applications. Furthermore, regulatory agencies require extensive exploration and analysis to secure endorsements for the inclusion of BSs/BEs as potential food additives. This review emphasizes the promising properties of BSs/BEs, trailed by an overview of their current use in food formulations, as well as risk and toxicity assessment. Finally, we assess their potential challenges and upcoming future in substituting chemical-based surfactants.


Assuntos
Indústria Alimentícia , Tensoativos , Estudos Prospectivos , Tensoativos/química , Aditivos Alimentares
4.
Appl Biochem Biotechnol ; 195(3): 2114-2133, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36385366

RESUMO

Biofouling roots damage to membrane bioreactors (MBRs), such as physical, functional and organisational changes and even therefore clogging of the membrane pores and successive microbial degradation. Further, it blocks the pores, results into a biomass cake and in due course reduces the membrane flux and leads to an increase in the operational costs. MBR fouling contributed to the rise in transmembrane pressure (TMP) and decrease in permeate flux (in case of constant pressure operation mode). Chemical surfactants adopted for the cleaning of membrane surfaces have certain disadvantages such as toxicity manifestations, damage to the membranes and high CMC concentrations. Biosurfactant surfactants have attained increasing interest due to their low toxicity, biodegradability, stability to extreme environmental conditions such as temperatures, pH and tolerance to salinity. The biosurfactants trapped the foulants via micelle formation, which distresses hydrophobic interactions amongst bacteria and the surface. Rhamnolipids as an anionic biosurfactant pose a significant interfacial potential and have affinity to bind organic matter. The present review discusses the problem of biofouling in MBRs, type and interactions of foulants involved and also highlights the mechanisms of biosurfactant cleaning, effect of different parameters, effect of concentration, TMP, flux recovery, permeability, mitigation practices and challenges.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Bactérias , Reatores Biológicos/microbiologia , Biomassa
5.
Plants (Basel) ; 11(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35050071

RESUMO

Rice-wheat (RW) rotation is the largest agriculture production system in South Asia with a multifaceted role in maintaining the livelihood of people. The customary practices and indiscriminate use of synthetic fertilizers have culminated in the decline of its productivity and profitability during the past two decades, thus affecting the sustainability of wheat. Safe Rock® Minerals (SRM) is a multi-nutrient rich natural rock mineral with great potential to manage soil degradation, reducing the input of fertilizers, improving soil fertility, and plant health. Thus, a field trial was conducted at the research farm of ICAR-Indian Agricultural Research Institute, New Delhi from 2016 to 2018 to evaluate the impact of Safe Rock® Minerals (SRM) on biometric parameters, productivity, quality, and nutrient uptake by conventional wheat and System of Wheat Intensification (SWI) in the wheat-rice cropping system. The results indicate that SWI performed better in terms of growth, yield, and quality parameters than conventional wheat. Among nutrient management practices; the highest growth, yield, and yield attributes of wheat were achieved with the use of SRM application 250 kg ha-1 + 100% Recommended Dose of Fertilizer (RDF). SRM application also increased grain protein content significantly. In conclusion, the integrated use of SRM with organic manures can serve as an eco-friendly approach for sustainable wheat production.

6.
Braz. arch. biol. technol ; 64: e21190749, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1278444

RESUMO

Abstract Bacteriocin has been identified as an excellent alternative to chemical preservatives due to its astonishing antimicrobial activity against food spoiling and food-borne pathogens. So there is a need to identify the newer and potent sources of bacteriocin producers. This study aims the isolation of potent bacteriocin producing microorganism from fresh fruits and vegetables, its production, purification, and characterization. Firstly, 43 isolates were analysed for its antimicrobial potential, out of which7 were found to inhibit the growth of various pathogens. Considering the results of antimicrobial activity; the microorganism isolated from mango was regarded as the most potent one; which was identified as Bacillus subtilis VS.70% ammonium sulphate precipitated and dialysed bacteriocin was purified using DEAE cellulose and sephadex G75 chromatography. Bacteriocin was purified by 24.64 fold with 8.65% recovery and its molecular weight was found to be 31.2kDa. The Purified bacteriocin was found to be stable at broad pH and temperature. It was found to be degraded by various proteases studied confirming its proteinaceous nature. Considering all these attributes; the purified bacteriocin isolated from Bacillus subtilis VS can be exploited by various food industries.


Assuntos
Peptídeo Hidrolases/análise , Bacteriocinas/análise , Anti-Infecciosos/análise , Bacillus subtilis , Cromatografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...