Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Anim Resour ; 44(3): 620-634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38765285

RESUMO

This study explores the potential of utilizing meat byproducts, specifically chicken and beef liver, to enhance the nutritional value of processed foods like chicken nuggets. Proximate analysis was conducted on the livers, including moisture, ash, fat, and protein content, and degradation potential was observed. Antioxidant potential was analyzed through 2,2-diphenyl-1-picrylhydrazyl (DPPH). The total phenolic content (TPC), oxidative stability through peroxide value (POV), and free fatty acid (FFA) were performed to evaluate quality changes during seven-day storage. The radical scavenging activity showed that beef liver has excellent antioxidant capacity (61.55%- and 195.89-mM gallic acid equivalent for DPPH and TPC, respectively) compared to chicken liver and significantly increased the antioxidant potential of nuggets by 5%-10%. POV and FFA values increased with increased storage days for the liver and its incorporation in nuggets. However, the values remained under the 10 meq/kg threshold. Incorporating the livers into chicken nuggets led to a significant (p=0.000) improvement in nutritional content, particularly a 1.5%-2% increase in protein, with a similar increase in mineral content. Texture and sensory evaluations indicated favorable consumer acceptability for liver-enriched nuggets. Overall, this research shows the value of adding liver as a functional ingredient to enhance the nutritional profile of processed foods.

2.
Prev Nutr Food Sci ; 29(1): 70-79, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38576879

RESUMO

The use of byproducts from the food industry and the investigation of substitute sources are becoming progressively significant in fulfilling the consumer demand for animal-based protein. This study aimed to investigate the nutritional value of mutton and fish livers and their future application as a source of high-added-value proteins for supplement formulation. We performed compositional analysis (moisture, ash, crude protein, crude fat), free fatty acid (FFA) analysis, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and the color, peroxide value (POV), and total phenolic composition (TPC) were assessed to evaluate the nutritional value and shelf stability of mutton and fish livers. The optimized proximate and kinetics were later used to develop chicken nuggets with different percentages of mutton and fish liver added. The formulation was tested for the textural and organoleptic properties of value-added chicken nuggets that predict consumer acceptability. Comparative analysis of the variance between mutton and fish liver showed a highly significant (P<0.01) decrease in moisture, ash, protein, fat, DPPH, and TPC at different days and hours. The mutton liver had relatively high antioxidant potential (25.9% DPPH and 154-mg GAE/100 g TPC) compared with the fish liver. However, the fish liver's FFA and POV (2.4% for both) were higher than those of the mutton liver. The results showed that, after formulation, an increase in the amount of liver led to a highly significant (P<0.01) rise in the nutritional value of the nuggets, including a 1.5%∼2.0% increase in protein content. This research indicates that valuing mutton and fish liver as a protein replacer in processed foods can be useful in developing healthy food products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...