Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Oncol ; 31(4): 2024-2046, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38668053

RESUMO

KRAS is a small GTPase that is among the most commonly mutated oncogenes in cancer. Here, we discuss KRAS biology, therapeutic avenues to target it, and mechanisms of resistance that tumors employ in response to KRAS inhibition. Several strategies are under investigation for inhibiting oncogenic KRAS, including small molecule compounds targeting specific KRAS mutations, pan-KRAS inhibitors, PROTACs, siRNAs, PNAs, and mutant KRAS-specific immunostimulatory strategies. A central challenge to therapeutic effectiveness is the frequent development of resistance to these treatments. Direct resistance mechanisms can involve KRAS mutations that reduce drug efficacy or copy number alterations that increase the expression of mutant KRAS. Indirect resistance mechanisms arise from mutations that can rescue mutant KRAS-dependent cells either by reactivating the same signaling or via alternative pathways. Further, non-mutational forms of resistance can take the form of epigenetic marks, transcriptional reprogramming, or alterations within the tumor microenvironment. As the possible strategies to inhibit KRAS expand, understanding the nuances of resistance mechanisms is paramount to the development of both enhanced therapeutics and innovative drug combinations.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Mutação
2.
Front Genet ; 14: 1184600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359373

RESUMO

Breast, lung, and colorectal cancer resistance to molecular targeted therapy is a major challenge that unfavorably impacts clinical outcomes leading to hundreds of thousands of deaths annually. In ERBB2+ cancers regardless of the tissue of origin, many ERBB2+ cancers are resistant to ERBB2-targeted therapy. We discovered that ERBB2+ cancer cells are enriched with poly U sequences on their 3'UTR which are mRNA-stabilizing sequences. We developed a novel technology, in which we engineered these ERBB2 mRNA-stabilizing sequences to unstable forms that successfully overwrote and outcompeted the endogenous ERBB2 mRNA-encoded message and degraded ERBB2 transcripts which led to the loss of the protein across multiple cancer cell types both in the wildtype and drug-resistance settings in vitro and in vivo, offering a unique safe novel modality to control ERBB2 mRNA and other pervasive oncogenic signals where current targeted therapies fail.

3.
Ann Otol Rhinol Laryngol ; 131(3): 259-267, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34041924

RESUMO

OBJECTIVES: (1) Determine the feasibility of obtaining a global, unbiased metabolomic profile on laryngeal muscle in a rat model; (2) evaluate the impact of biological aging on the laryngeal metabolome; and (3) characterize biochemical expression differences between aged and non-aged laryngeal and hindlimb muscle. METHODS: Thyroarytenoid laryngeal muscle and plantaris hindlimb muscle were harvested from 5 young adult (9 months old) and 5 older adult (32 months old) F344BN rats. Tissue was processed and analyzed using LC-MS methods. Detected metabolites were compared to widely used metabolite databases and KEGG pathway enrichment was performed on significant metabolites. RESULTS: The greatest differences in metabolite expression were between laryngeal and limb muscle with 126 different metabolites found between laryngeal and limb within the young group and 149 different metabolites within the old group. Significant hits between muscle groups highlighted amino acid differences between these tissues. There were more robust differences with age in limb muscle compared to laryngeal muscle. CONCLUSIONS: Amino acid metabolism is a key difference between muscles of the limbs and larynx. Due to the number of differentially expressed metabolites between the 2 muscle groups, caution should be exercised when applying skeletal limb muscle physiology and biology concepts to the vocal muscles in both aged and non-aged musculoskeletal systems. Mechanisms underlying less robust effects of age on laryngeal muscle compared to limb muscle require elucidation.


Assuntos
Envelhecimento/metabolismo , Músculos Laríngeos/metabolismo , Metabolômica , Músculo Esquelético/metabolismo , Fatores Etários , Animais , Cromatografia Líquida , Estudos de Viabilidade , Membro Posterior , Modelos Animais , Projetos Piloto , Ratos , Ratos Endogâmicos F344 , Espectrometria de Massas em Tandem
4.
Nat Commun ; 12(1): 4905, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385458

RESUMO

α-ketoglutarate (KG), also referred to as 2-oxoglutarate, is a key intermediate of cellular metabolism with pleiotropic functions. Cell-permeable esterified analogs are widely used to study how KG fuels bioenergetic and amino acid metabolism and DNA, RNA, and protein hydroxylation reactions, as cellular membranes are thought to be impermeable to KG. Here we show that esterified KG analogs rapidly hydrolyze in aqueous media, yielding KG that, in contrast to prevailing assumptions, imports into many cell lines. Esterified KG analogs exhibit spurious KG-independent effects on cellular metabolism, including extracellular acidification, arising from rapid hydrolysis and de-protonation of α-ketoesters, and significant analog-specific inhibitory effects on glycolysis or mitochondrial respiration. We observe that imported KG decarboxylates to succinate in the cytosol and contributes minimally to mitochondrial metabolism in many cell lines cultured in normal conditions. These findings demonstrate that nuclear and cytosolic KG-dependent reactions may derive KG from functionally distinct subcellular pools and sources.


Assuntos
Aminoácidos/metabolismo , Metabolismo Energético , Ésteres/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mitocôndrias/metabolismo , Ácido Succínico/metabolismo , Animais , Linhagem Celular Tumoral , Citosol/metabolismo , Ésteres/química , Glicólise , Células HEK293 , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Ácidos Cetoglutáricos/química , Camundongos , Consumo de Oxigênio , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...