Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(1): 33-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38435849

RESUMO

Nitric oxide plays a significant role in the defense signaling during pathogen interaction in plants. Quick wilt disease is a devastating disease of black pepper, and leads to sudden mortality of pepper vines in plantations. In this study, the role of nitric oxide was studied during Phytophthora capsici infection in black pepper variety Panniyur-1. Nitric oxide was detected from the different histological sections of P. capsici infected leaves. Furthermore, the genome-wide transcriptome analysis characterized typical domain architect and structural features of nitrate reductase (NR) and nitric oxide associated 1 (NOA1) gene that are involved in nitric oxide biosynthesis in black pepper. Despite the upregulation of nitrate reductase (Pn1_NR), a reduced expression of Pn1_NOA1 was detected in the P. capsici infected black pepper leaf. Subsequent sRNAome-assisted in silico analysis revealed possible microRNA mediated regulation of Pn1_NOA mRNAs. Furthermore, sRNA/miRNA mediated cleavage on Pn1_NOA1 mRNA was validated through modified 5' RLM RACE experiments. Several hormone-responsive cis-regulatory elements involved in stress response was detected from the promoter regions of Pn_NOA1, Pn_NR1 and Pn_NR2 genes. Our results revealed the role of nitric oxide during stress response of P. capsici infection in black pepper, and key genes involved in nitric oxide biosynthesis and their post-transcriptional regulatory mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01414-z.

2.
3 Biotech ; 13(3): 95, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36845076

RESUMO

Small RNA (sRNA) mediated gene regulation during Sri Lankan Cassava Mosaic Virus (SLCMV) infection was studied from the Indian Cassava Cultivar H226. Our study generated high throughput sRNA dataset of 23.64 million reads from the control and SLCMV infected H226 leaf libraries. mes-miR9386 was detected as the most prominent miRNA expressed in control and infected leaf. Among the differentially expressed miRNAs, mes-miR156, mes- miR395 and mes-miR535a/b showed significant down regulation in the infected leaf. Genome-wide analysis of the three small RNA profiles revealed critical role of virus-derived small RNAs (vsRNAs) from the infected leaf tissues of H226. The vsRNAs were mapped to the bipartite SLCMV genome and high expression of siRNAs generated from the virus genomic region encoding AV1/AV2 genes in the infected leaf pointed towards the susceptibility of H226 cultivars to SLCMV. Furthermore, the sRNA reads mapped to the antisense strand of the SLCMV ORFs was higher than the sense strand. These vsRNAs were potential to target key host genes involved in virus interaction such as aldehyde dehydrogenase, ADP-ribosylation factor1 and ARF1-like GTP-binding proteins. The sRNAome-assisted analysis also revealed the origin of virus-encoded miRNAs from the SLCMV genome in the infected leaf. These virus-derived miRNAs were predicted to have hair-pin like secondary structures, and have different isoforms. Moreover, our study revealed that the pathogen sRNAs play a critical role in the infection process in H226 plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03494-2.

3.
J Reprod Infertil ; 23(1): 54-60, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045886

RESUMO

Background: Anti-mullerian hormone (AMH) is a marker for predicting ovarian response to gonadotropin stimulation. It plays an important role in ovarian primordial follicle recruitment and dominant follicle selection. Therefore, the present study evaluated the AMH levels and their association with fertility/reproductive outcomes among women undergoing IVF. Methods: A retrospective study was conducted on 665 women in GarbhaGudi Institute of Reproductive Health and Research in India from October 2018 to 2019. Subjects were divided into ≥1.1 and ≤1.1 AMH level groups. Data on age, luteinizing hormone; LH (mIU/L), follicle-stimulating hormone values; FSH (mIU/ml), LH value, oocytes retrieved, and oocytes fertilization were collected. AMH category was considered as the primary explanatory variable. Independent sample t-test and chi-square tests were performed. The p<0.05 was considered statistically significant. Results: Couple's age, FSH values (mIU/ml), number of large follicles, matured oocytes, fertilized oocytes, and cleaved embryos were statistically significant (p<0.001) among subjects with ≥1.1 AMH values. Percentage of women with successful embryo transfer was slightly higher among AMH category 1.1 (p=0.09). Fertilization rate (86.67±20.08 vs. 83.64±21.39, p=0.18) and clinical pregnancy rate (43.38% vs. 36.36%, p=0.19) were slightly higher among women with AMH level of ≥1.1 as compared to AMH of <1.1. Live birth rate was slightly higher among women with AMH level of 1.1 (25.85% vs. 22.22%, p=0.45). Also, the number of fertilized oocytes was associated with clinical pregnancy rate (aOR=1.20, 95%CI 1.09-1.33). Conclusion: Women with ≥1.10 serum AMH levels had more number of retrieved oocytes, good oocyte quality, increased embryo transfer, and fertilization rates.

4.
Sci Rep ; 7: 41052, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145468

RESUMO

Small RNAs derived from ribosomal RNAs (srRNAs) are rarely explored in the high-throughput data of plant systems. Here, we analyzed srRNAs from the deep-sequenced small RNA libraries of Piper nigrum, a unique magnoliid plant. The 5' end of the putative long form of 5.8S rRNA (5.8SLrRNA) was identified as the site for biogenesis of highly abundant srRNAs that are unique among the Piperaceae family of plants. A subsequent comparative analysis of the ninety-seven sRNAomes of diverse plants successfully uncovered the abundant existence and precise cleavage of unique rRF signature small RNAs upstream of a novel 5' consensus sequence of the 5.8S rRNA. The major cleavage process mapped identically among the different tissues of the same plant. The differential expression and cleavage of 5'5.8S srRNAs in Phytophthora capsici infected P. nigrum tissues indicated the critical biological functions of these srRNAs during stress response. The non-canonical short hairpin precursor structure, the association with Argonaute proteins, and the potential targets of 5'5.8S srRNAs reinforced their regulatory role in the RNAi pathway in plants. In addition, this novel lineage specific small RNAs may have tremendous biological potential in the taxonomic profiling of plants.


Assuntos
Piper nigrum/genética , RNA de Plantas/metabolismo , RNA Ribossômico 5,8S/genética , RNA Nuclear Pequeno/metabolismo , Proteínas Argonautas/genética , Sequência de Bases , Biblioteca Gênica , Conformação de Ácido Nucleico , Phytophthora/patogenicidade , Piper nigrum/metabolismo , Piper nigrum/parasitologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Plantas/genética , Plantas/metabolismo , Clivagem do RNA , Interferência de RNA , RNA de Plantas/genética , RNA Ribossômico 5,8S/química , RNA Nuclear Pequeno/genética , Alinhamento de Sequência
5.
Front Plant Sci ; 7: 767, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313593

RESUMO

Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5'tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5'tRFs in the infected leaf and root. The abundance of 5'tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5'Ala(CGC) tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5'Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper.

6.
Plant Cell Rep ; 35(1): 53-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26400683

RESUMO

KEY MESSAGE: Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Piper nigrum/genética , Transcriptoma , Sequência de Bases , Biologia Computacional , Sequência Conservada , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta/genética , Caules de Planta/genética , Isoformas de RNA , RNA Mensageiro/genética , RNA de Plantas/genética , Análise de Sequência de RNA
7.
PLoS One ; 8(3): e56694, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469176

RESUMO

Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of '43 pre-miRNA candidates bearing different types of SSR motifs'. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted 'pre-miRNA candidates bearing SSRs'. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted 'pre-miRNA candidates'. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of 'tandem repeats' in miRNAs.


Assuntos
Genoma de Planta , MicroRNAs/química , Repetições de Microssatélites , Piper nigrum/genética , Precursores de RNA/química , RNA de Plantas/química , Transcriptoma , Sequência de Bases , Simulação por Computador , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Modelos Moleculares , Dados de Sequência Molecular , Precursores de RNA/genética , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...