Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38045237

RESUMO

Background: Behavioral, social, and physical characteristics are posited to distinguish the sexes, yet research on transcription-level sexual differences in the brain is limited. Here, we investigated sexually divergent brain transcriptomics in prepubertal cynomolgus macaques, a commonly used surrogate species to humans. Methods: A transcriptomic profile using RNA sequencing was generated for the temporal lobe, ventral midbrain, and cerebellum of 3 female and 3 male cynomolgus macaques previously treated with an Adeno-associated virus vector mix. Statistical analyses to determine differentially expressed protein-coding genes in all three lobes were conducted using DeSeq2 with a false discovery rate corrected P value of .05. Results: We identified target genes in the temporal lobe, ventral midbrain, and cerebellum with functions in translation, immunity, behavior, and neurological disorders that exhibited statistically significant sexually divergent expression. Conclusions: We provide potential mechanistic insights to the epidemiological differences observed between the sexes with regards to mental health and infectious diseases, such as COVID19. Our results provide pre-pubertal information on sexual differences in non-human primate brain transcriptomics and may provide insight to health disparities between the biological sexes in humans.

2.
Mol Ther Methods Clin Dev ; 18: 159-166, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32637447

RESUMO

Metal elements are essential components of approximately half of all cellular proteins, and approximately one-third of all known enzymes thus far are metalloenzymes. Several cellular proteins and enzymes undoubtedly impact the transduction efficiency of recombinant adeno-associated virus (AAV) vectors, but the precise role of metal ions in this process has not been studied in detail. In the present studies, we systematically evaluated the effects of all 10 essential metal ions (calcium, cobalt, copper, iron, magnesium, manganese, molybdenum, potassium, sodium, and zinc) on the transduction efficiency of AAV vectors. We report herein that five essential metal ions (iron, magnesium, manganese, molybdenum, and sodium) had little to no effect, and calcium strongly inhibited the transduction efficiency of AAV2 vectors. Whereas copper and potassium increased the transduction efficiency by ∼5-fold and ∼2-fold, respectively, at low concentrations, both essential metals were strongly inhibitory at higher concentrations. Calcium also inhibited the transduction efficiency by ∼3-fold. Two metal ions (cobalt and zinc) increased the transduction efficiency up to ∼10-fold in a dose-dependent manner. The combined use of cobalt and zinc resulted in more than an additive effect on AAV2 vector transduction efficiency (∼30-fold). The transduction efficiency of AAV serotypes 1 through 6 (AAV1-AAV6) vectors was also augmented by zinc. Similarly, the transduction of both single-stranded (ss) and self-complementary (sc) AAV3 vectors was enhanced by zinc. Zinc treatment also led to a dose-dependent increase in expression of a therapeutic protein, the human clotting factor IX (hF.IX), mediated by scAAV3 vectors in a human hepatic cell line. This simple strategy of essential metal ion-mediated enhancement may be useful to lower the dose of AAV vectors for their optimal use in human gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...