Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Cancer Ther ; 23(6): 751-765, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38588408

RESUMO

A majority of patients with cancer receive radiotherapy as part of their treatment regimens whether using external beam therapy or locally-delivered radioisotopes. While often effective, some tumors are inadequately controlled with radiation and radiotherapy has significant short-term and long-term toxicities for cancer survivors. Insights into molecular mechanisms involved in cellular responses to DNA breaks introduced by radiation or other cancer therapies have been gained in recent years and approaches to manipulate these responses to enhance tumor cell killing or reduce normal tissue toxicity are of great interest. Here, we report the identification and initial characterization of XRD-0394, a potent and specific dual inhibitor of two DNA damage response kinases, ATM and DNA-PKcs. This orally bioavailable molecule demonstrates significantly enhanced tumor cell kill in the setting of therapeutic ionizing irradiation in vitro and in vivo. XRD-0394 also potentiates the effectiveness of topoisomerase I inhibitors in vitro. In addition, in cells lacking BRCA1/2 XRD-0394 shows single-agent activity and synergy in combination with PARP inhibitors. A phase Ia clinical trial (NCT05002140) with XRD-0394 in combination with radiotherapy has completed. These results provide a rationale for future clinical trials with XRD-0394 in combination with radiotherapy, PARP inhibitors, and targeted delivery of topoisomerase I inhibitors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteína Quinase Ativada por DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Radiossensibilizantes , Inibidores da Topoisomerase I , Humanos , Animais , Inibidores da Topoisomerase I/farmacologia , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Radiossensibilizantes/farmacologia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Feminino , Sinergismo Farmacológico
2.
Neurourol Urodyn ; 40(6): 1470-1478, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015163

RESUMO

AIMS: To determine the effect of prostatic radiation therapy (RT) on bladder contractility and morphology, and axon, or neuron profiles within the detrusor and major pelvic ganglia (MPG) in male rats. METHODS: Male Sprague-Dawley rats (8 weeks) received a single dose of prostatic RT (0 or 22 Gy). Bladders and MPG were collected 2- and 10-weeks post-RT. Detrusor contractile responses to carbachol and electrical field stimulation (EFS) were measured. Bladders were stained with Masson's trichrome, and antibodies for nonspecific neuronal marker, cholinergic nerve marker choline acetyltransferase (ChAT), and alpha-smooth muscle actin. MPG gene expression was assessed by quantitative polymerase chain reaction for ubiquitin carboxy-terminal hydrolase L1 (Uchl1) and Chat. RESULTS: At 2 weeks post-RT, bladder smooth muscle, detrusor cholinergic axon profiles, and MPG Chat gene expression were increased (p < .05), while carbachol and EFS-mediated contractions were decreased (p < .05). In contrast, at 10 weeks post-RT, nerve-mediated contractions were increased compared with control (p < .05), while bladder smooth muscle, detrusor cholinergic axon profiles, MPG Chat expression, and carbachol contractions had normalized. At both 2- and 10-weeks post-RT, there was no change in detrusor nonspecific axon profiles and MPG Uchl1 expression. CONCLUSION: In a rat model, RT of the prostate and MPG was associated with early changes in MPG Chat gene expression, and bladder cholinergic axon profiles and smooth muscle content which resolved over time. After RT recovery, bladder contractility decreased early and increased by 10 weeks. Long-term changes to the MPG and increased bladder cholinergic axons may contribute to RT-induced bladder dysfunction in prostate cancer survivors.


Assuntos
Contração Muscular , Bexiga Urinária , Animais , Carbacol/farmacologia , Masculino , Músculo Liso , Ratos , Ratos Sprague-Dawley
3.
Prostate Cancer Prostatic Dis ; 24(1): 128-134, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32647352

RESUMO

BACKGROUND: Erectile dysfunction (ED) is a prevalent side effect of prostate cancer treatment. We hypothesized that the previously reported rates of ED may have improved with the advent of modern technology. The purpose of this project was to evaluate modern external beam radiotherapy and brachytherapy techniques to determine the incidence of radiotherapy (RT) induced ED. METHODS: A systematic review of the literature published between January 2002 and December 2018 was performed to obtain patient reported rates of ED after definitive external beam radiotherapy, ultrafractionated stereotactic radiotherapy, and brachytherapy (BT) to the prostate in men who were potent prior to RT. Univariate and multivariate analyses of radiation dose, treatment strategy, and length of follow-up were analyzed to ascertain their relationship with RT-induced ED. RESULTS: Of 890 articles reviewed, 24 met inclusion criteria, providing data from 2714 patients. Diminished erectile function status post RT was common and similar across all studies. The median increase in men reporting ED was 17%, 26%, 23%, and 23%, 3DCRT, IMRT, low dose rate BT, and SBRT, respectively, at 2-year median follow-up. CONCLUSION: ED is a common side effect of RT. Risk of post-RT ED is similar for both LDR brachytherapy and external beam RT with advanced prostate targeting and penile-bulb sparing techniques utilized in modern RT techniques.


Assuntos
Braquiterapia/efeitos adversos , Disfunção Erétil/etiologia , Ereção Peniana/efeitos da radiação , Neoplasias da Próstata/radioterapia , Disfunção Erétil/fisiopatologia , Humanos , Masculino , Neoplasias da Próstata/fisiopatologia , Dosagem Radioterapêutica
4.
Clin Cancer Res ; 26(18): 5036-5047, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32718998

RESUMO

PURPOSE: Nanoparticle-encapsulated drug formulations can improve responses to conventional chemotherapy by increasing drug retention within the tumor and by promoting a more effective antitumor immune response than free drug. New drug delivery modalities are needed in sarcomas because they are often chemoresistant cancers, but the rarity of sarcomas and the complexity of diverse subtypes makes it challenging to investigate novel drug formulations. EXPERIMENTAL DESIGN: New drug formulations can be tested in animal models of sarcomas where the therapeutic response of different formulations can be compared using mice with identical tumor-initiating mutations. Here, using Cre/loxP and CRISPR/Cas9 techniques, we generated two distinct mouse models of Pten-deleted soft-tissue sarcoma: malignant peripheral nerve sheath tumor (MPNST) and undifferentiated pleomorphic sarcoma (UPS). We used these models to test the efficacy of chimeric polypeptide doxorubicin (CP-Dox), a nanoscale micelle formulation, in comparison with free doxorubicin. RESULTS: The CP-Dox formulation was superior to free doxorubicin in MPNST models. However, in UPS tumors, CP-Dox did not improve survival in comparison with free doxorubicin. While CP-Dox treatment resulted in elevated intratumoral doxorubicin concentrations in MPNSTs, this increase was absent in UPS tumors. In addition, elevation of CD8+ T cells was observed exclusively in CP-Dox-treated MPNSTs, although these cells were not required for full efficacy of the CP nanoparticle-based chemotherapy. CONCLUSIONS: These results have important implications for treating sarcomas with nanoparticle-encapsulated chemotherapy by highlighting the tumor subtype-dependent nature of therapeutic response.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Neoplasias de Bainha Neural/tratamento farmacológico , Sarcoma/tratamento farmacológico , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/farmacocinética , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Knockout , Micelas , Nanopartículas/química , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/imunologia , Neoplasias de Bainha Neural/patologia , PTEN Fosfo-Hidrolase/genética , Peptídeos/química , Sarcoma/genética , Sarcoma/imunologia , Sarcoma/patologia , Distribuição Tecidual
5.
Cancer Res ; 79(10): 2447-2456, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068341

RESUMO

The immune system plays an important role in controlling cancer growth. However, cancers evolve to evade immune detection. Immune tolerance and active immune suppression results in unchecked cancer growth and progression. A major contributor to immune tolerance is the tumor physiologic microenvironment, which includes hypoxia, hypoglucosis, lactosis, and reduced pH. Preclinical and human studies suggest that exercise elicits mobilization of leukocytes into circulation (also known as "exercise-induced leukocytosis"), especially cytotoxic T cells and natural killer cells. However, the tumor physiologic microenvironment presents a significant barrier for these cells to enter the tumor and, once there, properly function. We hypothesize that the effect of exercise on the immune system's ability to control cancer growth is linked to how exercise affects the tumor physiologic microenvironment. Normalization of the microenvironment by exercise may promote more efficient innate and adaptive immunity within the tumor. This review summarizes the current literature supporting this hypothesis.


Assuntos
Exercício Físico , Neoplasias/imunologia , Neoplasias/fisiopatologia , Microambiente Tumoral , Imunidade Adaptativa , Formação de Anticorpos , Glucose/metabolismo , Humanos , Imunidade Inata , Ácido Láctico/metabolismo , Neoplasias/metabolismo
6.
EBioMedicine ; 40: 224-230, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30711517

RESUMO

BACKGROUND: Olaratumab (LY3012207/IMC-3G3/Lartruvo™) is a fully human monoclonal antibody specific for platelet-derived growth factor receptor alpha (PDGFRα). Phase Ib/II trial results of olaratumab plus doxorubicin in adult patients with advanced soft tissue sarcoma (STS) supported accelerated FDA approval of this regimen. Radiation therapy (RT) is frequently used for high-risk localized STS. However, olaratumab has not been tested with concurrent RT. Here, we evaluate the chimeric anti-mouse PDGFRα antibody 1E10Fc as a radiosensitizer in a primary mouse model of STS. METHODS: Primary STS were initiated in mice. When tumors reached 70 mm3, mice were allocated into treatment groups: 1) isotype, 2) 1E10Fc, 3) isotype + RT, 4) 1E10Fc + RT. 1E10Fc or isotype was given biweekly. RT (25 Gy delivered in 5 daily 5 Gy fractions) was initiated on Day 0 with first drug treatment. Tumors were measured 3× per week. Upon reaching 900 mm3, tumors and lungs were harvested. A two-way ANOVA was performed to compare tumor growth delay. Primary tumors were stained for CD31 and PDGFRα and lungs were assessed for micrometastases. A Chi-square test was performed to compare the development of micrometastases in the lungs after treatment with 1E10Fc or isotype. FINDINGS: RT significantly delayed time to tumor quintupling compared to no RT (p < 0·0001) [two-way ANOVA], but no difference in tumor growth was seen between mice receiving isotype or 1E10Fc treatment regardless of concurrent RT. Lower microvessel density was observed in the 1E10Fc + RT group. Fewer mice treated with 1E10Fc had micrometastases, but this difference was not statistically significant (p < 0·09). INTERPRETATION: 1E10Fc did not act as a radiosensitizer in this primary STS model. FUNDING: This study was funded by a research agreement from Eli Lilly and Company.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Radiossensibilizantes/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Sarcoma/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Radioterapia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Sarcoma/patologia , Sarcoma/terapia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Sex Med ; 16(1): 27-41, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30621923

RESUMO

BACKGROUND: Erectile dysfunction (ED) is common following radiation therapy (RT) for prostate cancer. Although the cause of RT-induced ED is unknown, damage to both the neuronal and vascular components supporting erections are often implicated. AIM: To determine the effects of prostatic RT on erections, penile vascular physiology, and major pelvic ganglia (MPG) neuron growth and survival in a rat model. METHODS: Male rats underwent 0 Gy or 22 Gy single fraction of prostate-confined, conformal RT. At 2 weeks or 10 weeks post-RT (n = 10/group), cavernous nerve stimulation was performed and erections were assessed. Tissue bath experiments were performed to assess both penile artery and internal pudendal artery (IPA) function. MPGs were dissociated and neurons grown in culture for 72 hours. Immunofluorescence staining was done to quantify neuron survival (terminal deoxynucleotidyl transferase nick-end labeling), outgrowth (beta-tubulin III), type (nitric oxide synthase [nNOS] and tyrosine hydroxylase [TH]), and nerve injury markers (small GTPase Rac1 and ninjurin-1 [Ninj-1]). Whole MPG real-time quantitative polymerase chain reaction (qPCR) was performed to measure expression of genes related to nerve type, neuron injury, repair, and myelination, such as Ninj-1, Rac1, ATF3, GAP43, GFAP, SOX10, and KROX20. OUTCOMES: Intracavernosal pressure (ICP) to mean arterial pressure (MAP) ratio, smooth muscle contractility and relaxation, gene expression, neuritogenesis, and apoptosis. RESULTS: Following RT, ICP/MAP was unchanged at 2 weeks or 10 weeks. Nerve-mediated penile contraction was increased at 2 weeks, whereas adrenergic contraction was reduced at 10 weeks. Penile relaxation and IPA vasoreactivity were unchanged. Neuronal apoptosis was more than doubled both early and late post-RT. RT caused a progressive decrease in neurite branching but an early increase and then late decrease in neurite lengthening. RT reduced the numbers of nNOS-positive neurons both early and late and also decreased MPG nitrergic gene expression. TH neurons and gene expression were unchanged at 2 weeks; however, both were decreased after 10 weeks. Although most markers of gene injury and repair were unaffected early post-RT, MPG expression of Ninj1 and GFAP increased. After 10 weeks, Ninj1 and GFAP remained elevated while markers of neuron injury (ATF3), outgrowth (GAP43 and Rac1), and myelin regulation (SOX10) were decreased. CLINICAL TRANSLATION: RT-induced ED may result from damage to the ganglia controlling erections. STRENGTHS & LIMITATIONS: This study used a clinically relevant, prostate-confined model to examine neurovascular structures not accessible in human studies. Unfortunately, rats did not exhibit ED at this time point. CONCLUSION: This is the first study to demonstrate impaired health and regeneration potential of dissociated MPG neurons following RT. Neuronal injury was apparent early post-RT and persisted or increased over time but was insufficient to cause ED at the time points examined. Powers SA, Odom MR, Pak ES, et al. Prostate-Confined Radiation Decreased Pelvic Ganglia Neuronal Survival and Outgrowth. J Sex Med 2019;16:27-41.


Assuntos
Disfunção Erétil/etiologia , Ereção Peniana/efeitos da radiação , Neoplasias da Próstata/radioterapia , Animais , Modelos Animais de Doenças , Gânglios/metabolismo , Plexo Hipogástrico/metabolismo , Masculino , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Pênis/fisiopatologia , Ratos , Ratos Sprague-Dawley , Traumatismos do Sistema Nervoso/complicações , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Int J Radiat Oncol Biol Phys ; 103(5): 1212-1220, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529374

RESUMO

PURPOSE: Radiation therapy (RT) offers an important and curative approach to treating prostate cancer, but it is associated with a high incidence of erectile dysfunction (ED). It is not clear whether the etiology of radiation-induced ED (RI-ED) is driven by RT-mediated injury to the vasculature, the nerves, or both. This pilot study sought to distinguish the effects of vascular and nerve injury in RI-ED by applying a vascular radioprotectant in a rat model of prostate RT. METHODS: A single dose of the thrombopoietin mimetic (TPOm; RWJ-800088), previously shown to mitigate radiation-induced vascular injury, was administered 10 minutes after single-fraction conformal prostate RT. Nine weeks after RT, rats were assessed for erectile and arterial function. Nerve markers were quantified with reverse transcriptase polymerase chain reaction. Immunofluorescent microscopy further characterized vascular effects of RT and TPOm. RESULTS: Sham animals and animals that received RT and TPOm showed significant arterial vasodilation in response to systemic hydralazine (24.1% ± 7.3% increase; P = .03 in paired t test). However, animals that received RT and vehicle were unable to mount a vasodilatory response (-7.4% ± 9.9% increase; P = .44 in paired t test). TPOm prevented RT-induced change in the penile artery cross-sectional area (P = .036), but it did not ameliorate cavernous nerve injury as evaluated by gene expression of neuronal injury markers. Despite significant structural and functional vascular protective effects and some trends for differences in nerve injury/recovery markers, TPOm did not prevent RI-ED at 9 weeks, as assessed by intracavernous pressure monitoring after cavernous nerve stimulation. CONCLUSIONS: These data suggest that vascular protection alone is not sufficient to prevent RI-ED and that cavernous nerve injury plays a key role in RI-ED. Further research is required to delineate the multifactorial nature of RI-ED and to determine if TPOm with modified dosing regimens can mitigate against nerve injury either through direct or vascular protective effects.


Assuntos
Disfunção Erétil/prevenção & controle , Pênis/efeitos da radiação , Peptídeos/administração & dosagem , Próstata/efeitos da radiação , Protetores contra Radiação/administração & dosagem , Vasodilatação/efeitos da radiação , Animais , Artérias/diagnóstico por imagem , Artérias/efeitos dos fármacos , Modelos Animais de Doenças , Disfunção Erétil/etiologia , Hidralazina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Manometria/métodos , Ereção Peniana/efeitos dos fármacos , Ereção Peniana/fisiologia , Ereção Peniana/efeitos da radiação , Pênis/irrigação sanguínea , Pênis/efeitos dos fármacos , Pênis/inervação , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Ultrassonografia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
9.
Semin Radiat Oncol ; 29(1): 16-24, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573180

RESUMO

Data from observational studies indicate that both physical activity as well as exercise (ie, structured physical activity) is associated with reductions in the risk of recurrence and cancer mortality after a diagnosis of certain forms of cancer. Emerging evidence from preclinical studies indicates that physical activity/exercise paradigms regulate intratumoral vascular maturity and perfusion, hypoxia, and metabolism and augments the antitumor immune response. Such responses may, in turn, enhance response to standard anticancer treatments. For instance, exercise improves efficacy of chemotherapeutic agents, and there is rationale to believe that it will also improve radiotherapy response. This review overviews the current preclinical as well as clinical evidence supporting exercise modulation of therapeutic response and postulated biological mechanisms underpinning such effects. We also examine the implications for tumor response to radiation, chemotherapy, and immunotherapy.


Assuntos
Terapia por Exercício/métodos , Neoplasias/terapia , Antineoplásicos/uso terapêutico , Terapia Combinada , Humanos , Imunoterapia , Neoplasias/imunologia , Radioterapia
10.
Cancer Metab ; 6: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473788

RESUMO

BACKGROUND: While self-reported exercise is associated with a reduction in the risk of recurrence in colorectal cancer, the molecular mechanisms underpinning this relationship are unknown. Furthermore, the effect of exercise on intratumoral metabolic processes has not been investigated in detail in human cancers. In our current study, we generated six colorectal patient patient-derived xenografts (CRC PDXs) models and treated each PDX to voluntary wheel running (exercise) for 6-8 weeks or no exposure to the wheel (control). A comprehensive metabolomics analysis was then performed on the PDXs to identify exercise induced changes in the tumor that were associated with slower growth. RESULTS: Tumor growth inhibition was observed in the voluntary wheel running group compared to the control group in three of the six models. A metabolomics analysis first revealed that central carbon metabolism was affected in each model irrespective of treatment. Interestingly, comparison of responsive and resistant models showed that levels of metabolites in nucleotide metabolism, known to be coupled to mitochondrial metabolism, were predictive of response. Furthermore, phosphocreatine levels which are linked to mitochondrial energy demands were associated with inhibition of tumor growth. CONCLUSION: Altogether, this study provides evidence that changes to tumor cell mitochondrial metabolism may underlie in part the benefits of exercise.

11.
Int J Radiat Oncol Biol Phys ; 101(5): 1194-1201, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012529

RESUMO

PURPOSE: Radiotherapy (RT) is commonly used to treat most pelvic malignancies. While treatment is often effective, curative radiation doses to the rectum can result in chronic radiation-induced proctitis, which is characterized by diarrhea, tenesmus, and/or rectal bleeding, recently termed pelvic radiation disease. An animal model of chronic radiation-induced proctitis would be useful to test both preventative and therapeutic strategies to limit this morbidity but has been elusive because of the high rodent mortality associated with acute bowel RT injury. The objective of this research was to develop a novel mouse model of chronic radiation-induced proctitis using advanced technology. METHODS AND MATERIALS: Using an X-RAD 225-Cx (Precision X-Ray) small animal irradiator, multiple plan configurations were evaluated for planning treatment volume and organ-at-risk avoidance to deliver a 15 Gy 3D conformal treatment plan. The final plan was verified by high resolution 3D dosimetry (PRESAGE/optical-CT), and delivered using a single arc. Mice were monitored for mortality for 250 days, followed by histopathological correlates including mucicarmine, Masson's trichrome, and fecal pellet length. RESULTS: Six beam arrangements were considered: single and parallel-opposed fields with whole-pelvis coverage, and collimated fields in parallel-opposed, 3-field, 4-field, and arc geometries. A collimated arc plan offered superior planning treatment volume coverage and organ-at-risk avoidance compared to whole-pelvis irradiation. Treatment verification with PRESAGE 3D dosimetry (Heuris Inc) showed >99% of voxels passing gamma analysis with 2%/2 mm criteria. Our treatment resulted in no acute mortality and 40% mortality at 250 days. Histopathological analysis showed increased mucous production and fibrosis of the irradiated colon, but no change in fecal pellet length. CONCLUSIONS: Our model was able to target successfully lower colon and rectum with lower mortality than other published models. This permitted measurement of late effects that recapitulate some features of rectal damage in humans.


Assuntos
Neoplasias Colorretais/radioterapia , Proctite/etiologia , Lesões por Radiação/diagnóstico , Reto/efeitos da radiação , Animais , Colo/efeitos da radiação , Modelos Animais de Doenças , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Fatores de Tempo , Resultado do Tratamento
12.
Radiat Res ; 190(1): 12-21, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671690

RESUMO

Vascular injury after radiation exposure contributes to multiple types of tissue injury through a cascade of events. Some of the earliest consequences of radiation damage include increased vascular permeability and promotion of inflammation, which is partially manifested by increased leukocyte-endothelial (L/E) interactions. We describe herein a novel intravital imaging method to evaluate L/E interactions, as a function of shear stress, and vascular permeability at multiple time points after local irradiation to the ear. This model permitted analysis of quiescent vasculature that was not perturbed by any surgical manipulation prior to imaging. To evaluate the effects of radiation on vascular integrity, fluorescent dextran was injected intravenously and its extravasation in the extravascular space surrounding the ear vasculature was measured at days 3 and 7 after 6 Gy irradiation. The vascular permeability rate increased approximately twofold at both days 3 and 7 postirradiation ( P < 0.05). Leukocyte rolling, which is indicative of L/E interactions, was significantly increased in mice at 24 h postirradiation compared to that of nonirradiated mice. To assess our model, as a means for assessing vascular radioprotectants, we treated additional cohorts of mice with a thrombopoietin mimetic, TPOm (RWJ-800088). In addition to stimulating platelet formation, thrombopoietin can protect vasculature after several forms of injury. Thus, we hypothesized that TPOm would reduce vascular permeability and L/E adhesion after localized irradiation to the ear vasculature of mice. If TPOm reduced these consequences of radiation, it would validate the utility of our intravital imaging method. TPOm reduced radiation-induced vascular leakage to control levels at day 7. Furthermore, L/E cell interactions were also reduced in irradiated mice treated with TPOm, compared with mice receiving irradiation alone, particularly at high shear stress ( P = 0.03, Kruskal-Wallis). We conclude that the ear model is useful for monitoring quiescent normal tissue vascular injury after radiation exposure. Furthermore, the application of TPOm, for preventing early inflammatory response created by damage to vascular endothelium, suggests that this drug may prove useful in reducing toxicities from radiotherapy, which damage microvasculature that critically important to tissue function.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/efeitos da radiação , Orelha/irrigação sanguínea , Leucócitos/citologia , Protetores contra Radiação/farmacologia , Veias/efeitos dos fármacos , Veias/efeitos da radiação , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Feminino , Leucócitos/efeitos dos fármacos , Leucócitos/efeitos da radiação , Masculino , Camundongos , Fatores de Tempo , Veias/imunologia , Veias/metabolismo
13.
Sci Rep ; 8(1): 4171, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520098

RESUMO

Many cancers adeptly modulate metabolism to thrive in fluctuating oxygen conditions; however, current tools fail to image metabolic and vascular endpoints at spatial resolutions needed to visualize these adaptations in vivo. We demonstrate a high-resolution intravital microscopy technique to quantify glucose uptake, mitochondrial membrane potential (MMP), and SO2 to characterize the in vivo phentoypes of three distinct murine breast cancer lines. Tetramethyl rhodamine, ethyl ester (TMRE) was thoroughly validated to report on MMP in normal and tumor-bearing mice. Imaging MMP or glucose uptake together with vascular endpoints revealed that metastatic 4T1 tumors maintained increased glucose uptake across all SO2 ("Warburg effect"), and also showed increased MMP relative to normal tissue. Non-metastatic 67NR and 4T07 tumor lines both displayed increased MMP, but comparable glucose uptake, relative to normal tissue. The 4T1 peritumoral areas also showed a significant glycolytic shift relative to the tumor regions. During a hypoxic stress test, 4T1 tumors showed significant increases in MMP with corresponding significant drops in SO2, indicative of intensified mitochondrial metabolism. Conversely, 4T07 and 67NR tumors shifted toward glycolysis during hypoxia. Our findings underscore the importance of imaging metabolic endpoints within the context of a living microenvironment to gain insight into a tumor's adaptive behavior.


Assuntos
Microscopia Intravital/métodos , Neoplasias Mamárias Animais , Neovascularização Patológica , Imagem Óptica/métodos , Compostos Organometálicos/farmacologia , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem Celular Tumoral , Feminino , Neoplasias Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Animais/diagnóstico por imagem , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Nus , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/metabolismo , Microambiente Tumoral
14.
Radiat Res ; 188(1): 94-104, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28517962

RESUMO

Normal tissue damage after head and neck radiotherapy involves a continuum of pathologic events to the mucosa, tongue and salivary glands. We examined the radioprotective effects of MnBuOE, a redox-active manganese porphyrin, at three stages of normal tissue damage: immediate (leukocyte endothelial cell [L/E] interactions), early (mucositis) and late (xerostomia and fibrosis) after treatment. In this study, mice received 0 or 9 Gy irradiation to the oral cavity and salivary glands ± MnBuOE treatment. Changes in leukocyte-endothelial cell interactions were measured 24 h postirradiation. At 11 days postirradiation, mucositis was assessed with a cathepsin-sensitive near-infrared optical probe. Stimulated saliva production was quantified at 11 weeks postirradiation. Finally, histological analyses were conducted to assess the extent of long-term effects in salivary glands at 12 weeks postirradiation. MnBuOE reduced oral mucositis, xerostomia and salivary gland fibrosis after irradiation. Additionally, although we have previously shown that MnBuOE does not interfere with tumor control at high doses when administered with radiation alone, most head and neck cancer patients will be treated with the combinations of radiotherapy and cisplatin. Therefore, we also evaluated whether MnBuOE would protect tumors against radiation and cisplatin using tumor growth delay as an endpoint. Using a range of radiation doses, we saw no evidence that MnBuOE protected tumors from radiation and cisplatin. We conclude that MnBuOE radioprotects normal tissue at both early and late time points, without compromising anti-tumor effects of radiation and cisplatin.


Assuntos
Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Metaloporfirinas/administração & dosagem , Lesões por Radiação/patologia , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/administração & dosagem , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Lesões por Radiação/etiologia , Resultado do Tratamento
15.
Cancer Res ; 76(14): 4032-50, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27381680

RESUMO

A major objective of the emerging field of exercise-oncology research is to determine the efficacy of, and biological mechanisms by which, aerobic exercise affects cancer incidence, progression, and/or metastasis. There is a strong inverse association between self-reported exercise and the primary incidence of several forms of cancer; similarly, emerging data suggest that exercise exposure after a cancer diagnosis may improve outcomes for early-stage breast, colorectal, or prostate cancer. Arguably, critical next steps in the development of exercise as a candidate treatment in cancer control require preclinical studies to validate the biological efficacy of exercise, identify the optimal "dose", and pinpoint mechanisms of action. To evaluate the current evidence base, we conducted a critical systematic review of in vivo studies investigating the effects of exercise in cancer prevention and progression. Studies were evaluated on the basis of tumor outcomes (e.g., incidence, growth, latency, metastasis), dose-response, and mechanisms of action, when available. A total of 53 studies were identified and evaluated on tumor incidence (n = 24), tumor growth (n = 33), or metastasis (n = 10). We report that the current evidence base is plagued by considerable methodologic heterogeneity in all aspects of study design, endpoints, and efficacy. Such heterogeneity precludes meaningful comparisons and conclusions at present. To this end, we provide a framework of methodologic and data reporting standards to strengthen the field to guide the conduct of high-quality studies required to inform translational, mechanism-driven clinical trials. Cancer Res; 76(14); 4032-50. ©2016 AACR.


Assuntos
Exercício Físico , Neoplasias/etiologia , Progressão da Doença , Humanos , Metástase Neoplásica , Microambiente Tumoral
17.
Environ Mol Mutagen ; 57(5): 372-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27224425

RESUMO

Combinations of radiotherapy (RT) and chemotherapy have shown efficacy toward brain tumors. However, therapy-induced oxidative stress can damage normal brain tissue, resulting in both progressive neurocognitive loss and diminished quality of life. We have recently shown that MnTnBuOE-2-PyP(5+) (Mn(III)meso-tetrakis(N-n-butoxyethylpyridinium -2-yl)porphyrin) rescued RT-induced white matter damage in cranially-irradiated mice. Radiotherapy is not used in isolation for treatment of brain tumors; temozolomide is the standard-of-care for adult glioblastoma, whereas cisplatin is often used for treatment of pediatric brain tumors. Therefore, we evaluated the brain radiation mitigation ability of MnTnBuOE-2-PyP(5+) after either temozolomide or cisplatin was used singly or in combination with 10 Gy RT. MnTnBuOE-2-PyP(5+) accumulated in brains at low nanomolar levels. Histological and neurobehavioral testing showed a drastic decrease (1) of axon density in the corpus callosum and (2) rotorod and running wheel performance in the RT only treatment group, respectively. MnTnBuOE-2-PyP(5+) completely rescued this phenotype in irradiated animals. In the temozolomide groups, temozolomide/ RT treatment resulted in further decreased rotorod responses over RT alone. Again, MnTnBuOE-2-PyP(5+) treatment rescued the negative effects of both temozolomide ± RT on rotorod performance. While the cisplatin-treated groups did not give similar results as the temozolomide groups, inclusion of MnTnBuOE-2-PyP(5+) did not negatively affect rotorod performance. Additionally, MnTnBuOE-2-PyP(5+) sensitized glioblastomas to either RT ± temozolomide in flank tumor models. Mice treated with both MnTnBuOE-2-PyP(5+) and radio-/chemo-therapy herein demonstrated brain radiation mitigation. MnTnBuOE-2-PyP(5+) may well serve as a normal tissue radio-/chemo-mitigator adjuvant therapy to standard brain cancer treatment regimens. Environ. Mol. Mutagen. 57:372-381, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Comportamento Animal/efeitos dos fármacos , Neoplasias Encefálicas/radioterapia , Encéfalo/efeitos da radiação , Metaloporfirinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Comportamento Animal/efeitos da radiação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Cisplatino/uso terapêutico , Terapia Combinada , Irradiação Craniana , Dacarbazina/administração & dosagem , Dacarbazina/efeitos adversos , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Feminino , Humanos , Metaloporfirinas/administração & dosagem , Metaloporfirinas/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Nus , Atividade Motora/efeitos dos fármacos , Atividade Motora/efeitos da radiação , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Temozolomida , Terapia por Raios X/efeitos adversos
18.
Int J Hyperthermia ; 32(1): 4-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26850697

RESUMO

In 2011 Hanahan and Weinberg updated their well-established paper 'The hallmarks of cancer'. The rationale for that review and its predecessor was to produce a conceptual framework for future research in cancer. The original Hallmarks included: cell signalling to enhance tumour cell proliferation, acquisition of ability to evade growth suppressors, developing mechanisms to resist cell death, enabling replicative immortality, initiating angiogenesis and activating processes to enable invasion and metastasis. In the more recent paper, Hanahan and Weinberg added important new features to this composite paradigm. The new features were: (1) altered metabolism, (2) evasion of immune destruction, (3) tumour promoting inflammation, and (4) the cellular microenvironment. These four new features are the main focus of this review. Hanahan and Weinberg did not specifically include the physiological microenvironment which is dominated by hypoxia and acidosis. In this review we will consider these features in addition to the cellular and metabolic components of the microenvironment. The purpose of this review is to present a vision of emerging fields of study in hyperthermia biology over the next decade and beyond. As such, we are focusing our attention on pre-clinical studies, primarily using mice. The application of hyperthermia in human patients has been thoroughly reviewed elsewhere.


Assuntos
Hipertermia Induzida , Neoplasias/terapia , Animais , Autoimunidade , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Neovascularização Patológica , Estresse Oxidativo , Microambiente Tumoral
19.
Int J Radiat Oncol Biol Phys ; 93(4): 892-900, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26530759

RESUMO

PURPOSE: To test the effects of a novel Mn porphyrin oxidative stress modifier, Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin (MnBuOE), for its radioprotective and radiosensitizing properties in normal tissue versus tumor, respectively. METHODS AND MATERIALS: Murine oral mucosa and salivary glands were treated with a range of radiation doses with or without MnBuOE to establish the dose-effect curves for mucositis and xerostomia. Radiation injury was quantified by intravital near-infrared imaging of cathepsin activity, assessment of salivation, and histologic analysis. To evaluate effects of MnBuOE on the tumor radiation response, we administered the drug as an adjuvant to fractionated radiation of FaDu xenografts. Again, a range of radiation therapy (RT) doses was administered to establish the radiation dose-effect curve. The 50% tumor control dose values with or without MnBuOE and dose-modifying factor were determined. RESULTS: MnBuOE protected normal tissue by reducing RT-mediated mucositis, xerostomia, and fibrosis. The dose-modifying factor for protection against xerostomia was 0.77. In contrast, MnBuOE increased tumor local control rates compared with controls. The dose-modifying factor, based on the ratio of 50% tumor control dose values, was 1.3. Immunohistochemistry showed that MnBuOE-treated tumors exhibited a significant influx of M1 tumor-associated macrophages, which provides mechanistic insight into its radiosensitizing effects in tumors. CONCLUSIONS: MnBuOE widens the therapeutic margin by decreasing the dose of radiation required to control tumor, while increasing normal tissue resistance to RT-mediated injury. This is the first study to quantitatively demonstrate the magnitude of a single drug's ability to radioprotect normal tissue while radiosensitizing tumor.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Metaloporfirinas/uso terapêutico , Mucosa Bucal/efeitos da radiação , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/uso terapêutico , Radiossensibilizantes/uso terapêutico , Glândulas Salivares/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Avaliação Pré-Clínica de Medicamentos/métodos , Fibrose/etiologia , Fibrose/prevenção & controle , Metaloporfirinas/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Órgãos em Risco/patologia , Órgãos em Risco/efeitos da radiação , Doses de Radiação , Protetores contra Radiação/farmacocinética , Radiossensibilizantes/farmacocinética , Distribuição Aleatória , Glândulas Salivares/patologia , Estomatite/etiologia , Estomatite/prevenção & controle , Xerostomia/etiologia , Xerostomia/prevenção & controle
20.
Radiat Res ; 184(5): 456-69, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26488758

RESUMO

Although a standardized approach to radiotherapy has been used to treat breast cancer, regardless of subtype (e.g., luminal, basal), recent clinical data suggest that radiation response may vary significantly among subtypes. We hypothesized that this clinical variability may be due, in part, to differences in cellular radiation response. In this study, we utilized RNA samples for microarray analysis from two sources: 1. Paired pre- and postirradiation breast tumor tissue from 32 early-stage breast cancer patients treated in our unique preoperative radiation Phase I trial; and 2. Sixteen biologically diverse breast tumor cell lines exposed to 0 and 5 Gy irradiation. The transcriptome response to radiation exposure was derived by comparing gene expression in samples before and after irradiation. Genes with the highest coefficient of variation were selected for further evaluation and validated at the RNA and protein level. Gene editing and agonistic antibody treatment were performed to assess the impact of gene modulation on radiation response. Gene expression in our cohort of luminal breast cancer patients was distinctly different before and after irradiation. Further, two distinct patterns of gene expression were observed in our biologically diverse group of breast cancer cell lines pre- versus postirradiation. Cell lines that showed significant change after irradiation were largely luminal subtype, while gene expression in the basal and HER2+ cell lines was minimally impacted. The 100 genes with the most significant response to radiation in patients were identified and analyzed for differential patterns of expression in the radiation-responsive versus nonresponsive cell lines. Fourteen genes were identified as significant, including FAS, a member of the tumor necrosis factor receptor family known to play a critical role in programed cell death. Modulation of FAS in breast cancer cell lines altered radiation response phenotype and enhanced radiation sensitivity in radioresistant basal cell lines. Our findings suggest that cell-type-specific, radiation-induced FAS contributes to subtype-specific breast cancer radiation response and that activation of FAS pathways may be exploited for biologically tailored radiotherapy.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Terapia de Alvo Molecular , Tolerância a Radiação/genética , Receptor fas/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Genes p53/genética , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Transporte Proteico/efeitos da radiação , Ativação Transcricional/efeitos da radiação , Transcriptoma/efeitos da radiação , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...