Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 140: 213049, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917685

RESUMO

The overwhelming potential of porous coordination polymers (PCP), also known as Metal-Organic Frameworks (MOFs), especially their nanostructures for various biomedical applications, have made these materials worth investigating for more applications and uses. MOFs unique structure has enabled them for most applications, particularly in biomedical and healthcare. A number of very informative review papers are available on the biomedical applications of MOFs for the reader's convenience. However, many of those reviews focus mainly on drug delivery applications, and no significant work has been reported on other MOFs for biomedical applications. This review aims to present a compact and highly informative global assessment of the recent developments in biomedical applications (excluding drug-delivery) of MOFs along with critical analysis. Researchers have recently adopted both synthetic and post-synthetic routes for the fabrication and modification of MOFs that have been discussed and analyzed. A critical review of the latest reports on the significant and exotic area of bio-sensing capabilities and applications of MOFs has been given in this study. In addition, other essential applications of MOFs, including photothermal therapy, photodynamic therapy, and antimicrobial activities, are also included. These recently grown emergent techniques and cancer treatment options have gained attention and require further investigations to achieve fruitful outcomes. MOF's role in these applications has been thoroughly discussed, along with future challenges and valuable suggestions for the research community that will help meet future demands.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Neoplasias , Fotoquimioterapia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Estruturas Metalorgânicas/uso terapêutico , Nanoestruturas/química , Neoplasias/tratamento farmacológico
2.
Int J Biol Macromol ; 195: 440-448, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920059

RESUMO

Synthesis of Cu-doped NiO composited with cellulose nanocrystals (CNC) was carried out by co-precipitation method. The aim of this study is to investigate the catalytic, antibacterial and molecular docking studies of prepared samples. XRD patterns confirmed rhombohedral structure of synthesized nanostructures with gradual increase in crystallite size with doping. The morphology as well as interlayer spacing was evaluated with HRTEM while functional groups presence in dopant-free and doped nanostructures was confirmed using FTIR spectra. Both CNC/NiO composite and Cu-doped CNC/NiO showed higher catalytic potential compared to dopant-free NiO, while Cu-doped CNC/NiO nanostructures exhibited significant potential for use in industrial dye degradation applications. Besides this, CNC/NiO composite showed good antibacterial activity against Escherichia coli (E. coli) bacteria and its bacterial activity increased with Cu doping. Furthermore, molecular docking predictions against dihydrofolate reductase and DNA gyrase enzyme confirmed interaction of NiO NPs, CNC/NiO and Cu-doped CNC/NiO inside active pockets and showed good agreement with in vitro bactericidal activity.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Celulose/química , Cobre/química , Nanopartículas/química , Níquel/química , Sítios de Ligação , Catálise , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfatidiletanolaminas/química , Ligação Proteica , Análise Espectral , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química
3.
Nanoscale Res Lett ; 16(1): 119, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312737

RESUMO

Nitrogen (N) and carbon nitride (C3N4)-doped TiO2 nanostructures were prepared using co-precipitation route. Fixed amount of N and various concentrations (0.1, 0.2, 0.3 wt%) of C3N4 were doped in TiO2 lattice. Through multiple techniques, structural, chemical, optical and morphological properties of samples were thoroughly investigated. XRD results verified anatase TiO2 presence along the substitutional doping of N, while higher degree of crystallinity as well as increased crystallite size were noticed after doping. HR-TEM study revealed formation of nanostructures incorporated on two dimensional (2D) C3N4 nanosheet surface. Elemental composition was checked out using EDS technique which confirmed the presence of dopant in product. Optical characteristics were evaluated with UV-vis spectroscopy which depicted representative redshift in absorption spectra resulted in a reduction in bandgap energy in N/C3N4-doped TiO2 samples. The formation of Ti-O-Ti bonds and different molecular vibrations were disclosed by FTIR. Trap sites and charge carrier's migration in the materials were evaluated with PL spectroscopy. Multiple catalytic activities (photo, sono and photo-sono) were undertaken to evaluate the dye degradation performance of prepared specimen against methylene blue and ciprofloxacin. Further, antimicrobial activity was analyzed against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...