Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 102(5-1): 053215, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327172

RESUMO

The dynamic structure factor and other dynamic characteristics of strongly coupled one-component plasmas have been studied [Yu. V. Arkhipov et al., Phys. Rev. Lett. 119, 045001 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.045001] using the self-consistent version of the method of moments. Within any version of the latter, the system dielectric function satisfies all involved sum rules and other exact relations automatically, and the advantage of this version is that, in addition, the dynamic characteristics (the dynamic structure factor, the dispersion, and decay parameters of the collective modes) are all expressed in terms of the static ones (the static structure factor) without any adjustment to the simulation data. The approach outlined in the aforementioned Letter is justified in detail and applied mainly to the classical Coulomb systems achieving satisfactory agreement with new numerical simulation data. It is shown how the realm of applicability of the method can be extended to partly degenerate and multicomponent systems, even to simple liquids. Some additional theoretical results are presented in the Supplemental Material.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 053102, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25493892

RESUMO

Mathematical, particularly, asymptotic properties of the random-phase approximation, Mermin approximation, and extended Mermin-type approximation of the coupled plasma dielectric function are analyzed within the method of moments. These models are generalized for two-component plasmas. Some drawbacks and advantages of the above models are pointed out. The two-component plasma stopping power is shown to be enhanced with respect to that of the electron fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...