Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790710

RESUMO

The effects of high-intensity blue light (HIBL, 500/1000 µmol m-2s-1, 450 nm) on Solanum lycopersicum mutants with high pigment (hp) and low pigment (lp) levels and cryptochrome 1 (cry1) deficiency on photosynthesis, chlorophylls, phenols, anthocyanins, nonenzymatic antioxidant activity, carotenoid composition, and the expression of light-dependent genes were investigated. The plants, grown under white light for 42 days, were exposed to HIBL for 72 h. The hp mutant quickly adapted to 500 µmol m-2s-1 HIBL, exhibiting enhanced photosynthesis, increased anthocyanin and carotenoids (beta-carotene, zeaxanthin), and increased expression of key genes involved in pigment biosynthesis (PSY1, PAL1, CHS, ANS) and PSII proteins along with an increase in nonenzymatic antioxidant activity. At 1000 µmol m-2s-1 HIBL, the lp mutant showed the highest photosynthetic activity, enhanced expression of genes associated with PSII external proteins (psbO, psbP, psbQ), and increased in neoxanthin content. This mutant demonstrated greater resistance at the higher HIBL, demonstrating increased stomatal conductance and photosynthesis rate. The cry1 mutant exhibited the highest non-photochemical quenching (NPQ) but had the lowest pigment contents and decreased photosynthetic rate and PSII activity, highlighting the critical role of CRY1 in adaptation to HIBL. The hp and lp mutants use distinct adaptation strategies, which are significantly hindered by the cry1 mutation. The pigment content appears to be crucial for adaptation at moderate HIBL doses, while CRY1 content and stomatal activity become more critical at higher doses.

2.
PeerJ ; 12: e16615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250719

RESUMO

Earlier, it was suggested that carotenoids in light-harvesting complexes 2 (LH2) can generate singlet oxygen, further oxidizing bacteriochlorophyll to 3-acetyl-chlorophyll. In the present work, it was found that illumination of isolated LH2 preparations of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with light in the carotenoid absorption region leads to the photoconsumption of molecular oxygen, which is accompanied by the formation of hydroperoxides of organic molecules in the complexes. Photoformation of two types of organic hydroperoxides were revealed: highly lipophilic (12 molecules per one LH2) and relatively hydrophobic (68 per one LH2). It has been shown that illumination leads to damage to light-harvesting complexes. On the one hand, photobleaching of bacteriochlorophyll and a decrease in its fluorescence intensity are observed. On the other hand, the photoinduced increase in the hydrodynamic radius of the complexes, the reduction in their thermal stability, and the change in fluorescence intensity indicate conformational changes occurring in the protein molecules of the LH2 preparations. Inhibition of the processes described above upon the addition of singlet oxygen quenchers (L-histidine, Trolox, sodium L-ascorbate) may support the hypothesis that carotenoids in LH2 preparations are capable of generating singlet oxygen, which, in turn, damage to protein molecules.


Assuntos
Ectothiorhodospira , Oxigênio Singlete , Bacterioclorofilas , Carotenoides , Peróxido de Hidrogênio
3.
Microorganisms ; 11(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38138009

RESUMO

Carotenoids are secondary metabolites that exhibit antioxidant properties and are characterized by a striking range of colorations from red to yellow. These natural pigments are synthesized by a wide range of eukaryotic and prokaryotic organisms. Among the latter, carotenoid-producing methanotrophic bacteria, which display fast growth on methane or natural gas, are of particular interest as potential producers of a feed protein enriched with carotenoids. Until recently, Methylomonas strain 16a and Methylomonas sp. ZR1 remained the only representatives of the genus for which detailed carotenoid profile was determined. In this study, we analyzed the genome sequences of five strains of Methylomonas species whose pigmentation varied from white and yellow to orange and red, and identified carotenoids produced by these bacteria. Carotenoids synthesized using four pigmented strains included C30 fraction, primarily composed of 4,4'-diaplycopene-4,4'-dioic acid and 4,4'-diaplycopenoic acid, as well as C40 fraction with the major compound represented by 1,1'-dihydroxy-3,4-didehydrolycopene. The genomes of studied Methylomonas strains varied in size between 4.59 and 5.45 Mb and contained 4201-4735 protein-coding genes. These genomes and 35 reference Methylomonas genomes available in the GenBank were examined for the presence of genes encoding carotenoid biosynthesis. Genomes of all pigmented Methylomonas strains harbored genes necessary for the synthesis of 4,4'-diaplycopene-4,4'-dioic acid. Non-pigmented "Methylomonas montana" MW1T lacked the crtN gene required for carotenoid production. Nearly all strains possessed phytoene desaturases, which explained their ability to naturally synthesize lycopene. Thus, members of the genus Methylomonas can potentially be considered as producers of C30 and C40 carotenoids from methane.

4.
Cells ; 12(21)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37947647

RESUMO

The effects of high-intensity light on the pigment content, photosynthetic rate, and fluorescence parameters of photosystem II in high-pigment tomato mutants (hp 3005) and low-pigment mutants (lp 3617) were investigated. This study also evaluated the dry weight percentage of low molecular weight antioxidant capacity, expression patterns of some photoreceptor-regulated genes, and structural aspects of leaf mesophyll cells. The 3005 mutant displayed increased levels of photosynthetic pigments and anthocyanins, whereas the 3617 mutant demonstrated a heightened content of ultraviolet-absorbing pigments. The photosynthetic rate, photosystem II activity, antioxidant capacity, and carotenoid content were most pronounced in the high-pigment mutant after 72 h exposure to intense light. This mutant also exhibited an increase in leaf thickness and water content when exposed to high-intensity light, suggesting superior physiological adaptability and reduced photoinhibition. Our findings indicate that the enhanced adaptability of the high-pigment mutant might be attributed to increased flavonoid and carotenoid contents, leading to augmented expression of key genes associated with pigment synthesis and light regulation.


Assuntos
Carotenoides , Solanum lycopersicum , Carotenoides/metabolismo , Antocianinas/metabolismo , Solanum lycopersicum/genética , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/genética , Antioxidantes/metabolismo
5.
Sensors (Basel) ; 23(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37837078

RESUMO

In this paper, a procedure for obtaining undistorted high derivatives (up to the eighth order) of the optical absorption spectra of biomolecule pigments has been developed. To assess the effectiveness of the procedure, the theoretical spectra of bacteriochlorophyll a, chlorophyll a, spheroidene, and spheroidenone were simulated by fitting the experimental spectra using the differential evolution algorithm. The experimental spectra were also approximated using sets of Gaussians to calculate the model absorption spectra. Theoretical and model spectra can be differentiated without smoothing (high-frequency noise filtering) to obtain high derivatives. Superimposition of the noise track on the model spectra allows us to obtain test spectra similar to the experimental ones. Comparison of the high derivatives of the model spectra with those of the test spectra allows us to find the optimal parameters of the filter, the application of which leads to minimal differences between the high derivatives of the model and test spectra. For all four studied pigments, it was shown that smoothing the experimental spectra with optimal filters makes it possible to obtain the eighth derivatives of the experimental spectra, which were close to the eighth derivatives of their theoretical spectra.

6.
Plants (Basel) ; 12(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37447113

RESUMO

The aim of this study was to investigate the effect of light quality (white fluorescent light, WFL, containing UV components), red light (RL, 660 nm), blue light (BL, 450 nm), and white LED light (WL, 450 + 580 nm) on the components of the cellular antioxidant system in Pinus sylvestris L. in needles, roots, and hypocotyls, focusing on the accumulation of key secondary metabolites and the expression of related genes. The qualitative and quantitative composition of carotenoids; the content of the main photosynthetic pigments, phenolic compounds, flavonoids (catechins, proanthocyanidins, anthocyanins), ascorbate, and glutathione; the activity of the main antioxidant enzymes; the content of hydrogen peroxide; and the intensity of lipid peroxidation (MDA and 4-HNE contents) were determined. RL resulted in an increase in the content of hydrogen peroxide and 4-HNE, as well as the total fraction of flavonoids in the needles. It also enhanced the expression of several PR (pathogen-related) genes compared to BL and WL. WFL increased the content of phenols, including flavonoids, and enhanced the overall activity of low-molecular antioxidants in needles and hypocotyls. BL increased the content of ascorbate and glutathione, including reduced glutathione, in the needles and simultaneously decreased the activity of peroxidases. Thus, by modifying the light quality, it is possible to regulate the accumulation of secondary metabolites in pine roots and needles, thereby influencing their resistance to various biotic and abiotic stressors.

7.
Foods ; 12(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107510

RESUMO

Environmental factors, such as light of different spectral compositions and temperature, can change the level of activated photoreceptors which, in turn, can affect the biosynthesis of secondary metabolites in the cells of green fruit. By briefly irradiating the harvested fruit of Capsicum annuum L. hot peppers with red light (RL, maximum 660 nm) and far-red light (FRL, maximum 730 nm) and by keeping them at a low temperature, we attempted to determine whether the state of phytochromes in fruit affects the biosynthesis of secondary metabolites. Using HPLC, we analysed the qualitative composition and quantitative content of the main carotenoids and alkaloids and the chlorophylls and ascorbate, in pepper fruit exposed to the above factors. We measured the parameters characterising the primary photochemical processes of photosynthesis and the transcript levels of genes encoding capsaicin biosynthesis enzymes. The total carotenoids content in the fruit increased most noticeably after 24 h of RL irradiation (more than 3.5 times compared to the initial value), and the most significant change in the composition of carotenoids occurred when the fruit was irradiated with FRL for 72 h. The capsaicin alkaloid content increased markedly after 72 h of FRL irradiation (more than 8 times compared to the initial value). It was suggested that decrease in the activity of phytochromes due to a low temperature or FRL may result in an increase in the expression of the PAL and CAM genes.

8.
Syst Appl Microbiol ; 46(2): 126398, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36724672

RESUMO

The genus Methylomonas accommodates strictly aerobic, obligate methanotrophs, with their sole carbon and energy sources restricted to methane and methanol. These bacteria inhabit oxic-anoxic interfaces of various freshwater habitats and have attracted considerable attention as potential producers of a single-cell protein. Here, we characterize two fast-growing representatives of this genus, strains 12 and MP1T, which are phylogenetically distinct from the currently described Methylomonas species (94.0-97.3 % 16S rRNA gene sequence similarity). Strains 12 and MP1T were isolated from freshwater sediments collected in Moscow and Krasnodar regions, respectively. Cells of these strains are Gram-negative, red-pigmented, highly motile thick rods that contain a type I intracytoplasmic membrane system and possess a particulate methane monooxygenase (pMMO) enzyme. These bacteria grow between 8 and 45 °C (optimum 35 °C) in a relatively narrow pH range of 5.5-7.3 (optimum pH 6.6-7.2). Major carotenoids synthesized by these methanotrophs are 4,4'-diaplycopene-4,4'-dioic acid, 1,1'-dihydroxy-3,4-didehydrolycopene and 4,4'-diaplycopenoic acid. High biomass yield, of up to 3.26 g CDW/l, is obtained during continuous cultivation of MP1T on natural gas in a bioreactor at a dilution rate of 0.22 h-1. The complete genome sequence of strain MP1T is 4.59 Mb in size; the DNA G + C content is 52.8 mol%. The genome encodes four rRNA operons, one pMMO operon and 4,216 proteins. The genome sequence displays 82-85 % average nucleotide identity to those of earlier described Methylomonas species. We propose to classify these bacteria as representing a novel species of the genus Methylomonas, M. rapida sp. nov., with the type strain MP1T (=KCTC 92586T = VKM B-3663T).


Assuntos
Methylomonas , Methylomonas/genética , RNA Ribossômico 16S/genética , Ácidos Graxos/química , DNA Bacteriano/genética , Filogenia , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
9.
PeerJ ; 11: e14769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743963

RESUMO

Novel peripheral light-harvesting (LH) complex designated as LL LH2 was isolated along with LH4 complex from Rhodopseudomonas palustris cells grown under low light intensity (LL). FPLC-MS/MS allowed to reveal PucABd and PucBabc apoproteins in LL LH2 complex, which is different from previously described LH4 complex containing PucABd, PucABa and PucBb. The main carotenoids in LL LH2 complex were rhodopin and 3,4-didehydrorhodopin. Three-dimensional modeling demonstrated which amino acid residues of all the ß-subunits could interact with carotenoids (Car) and bacteriochlorophyll a (BChl a). Analysis of amino acid sequences of α-subunits of both LL complexes showed presence of different C-terminal motifs, IESSVNVG in αa subunit and IESSIKAV in αd subunit, in the same positions of C-termini, which could reflect different retention force of LL LH2 and LH4 on hydroxyl apatite, facilitating successful isolation of these complexes. Differences of these LL complexes in protein and carotenoid composition, in efficiency of energy transfer from Car to BChl a, which is two times lower in LL LH2 than in LH4, allow to assign it to a novel type of light-harvesting complex in Rhodopseudomonas palustris.


Assuntos
Iluminação , Espectrometria de Massas em Tandem , Complexos de Proteínas Captadores de Luz/metabolismo , Carotenoides/metabolismo
10.
Plant Physiol Biochem ; 194: 576-588, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529008

RESUMO

Light harvesting is finetuned through two main strategies controlling energy transfer to the reaction centers of photosystems: i) regulating the amount of light energy at the absorption level, ii) regulating the amount of the absorbed energy at the utilization level. The first strategy is ensured by changes in the cross-section, i.e., the size of the photosynthetic antenna. These changes can occur in a short-term (state transitions) or long-term way (changes in antenna protein biosynthesis) depending on the light conditions. The interrelation of these two ways is still underexplored. Regulating light absorption through the long-term modulation of photosystem II antenna size has been mostly considered as an acclimatory mechanism to light conditions. The present review highlights that this mechanism represents one of the most versatile mechanisms of higher plant acclimation to various conditions including drought, salinity, temperature changes, and even biotic factors. We suggest that H2O2 is the universal signaling agent providing the switch from the short-term to long-term modulation of photosystem II antenna size under these factors. The second strategy of light harvesting is represented by redirecting energy to waste mainly via thermal energy dissipation in the photosystem II antenna in high light through PsbS protein and xanthophyll cycle. In the latter case, H2O2 also plays a considerable role. This circumstance may explain the maintenance of the appropriate level of zeaxanthin not only upon high light but also upon other stress factors. Thus, the review emphasizes the significance of both strategies for ensuring plant sustainability under various environmental conditions.


Assuntos
Arabidopsis , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese/fisiologia
11.
Biochemistry (Mosc) ; 87(10): 1169-1178, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273885

RESUMO

It is known that C40 carotenoids with a short chain of conjugated double bonds (CDB) (5 and 7, respectively) are universal precursors in the biosynthesis of colored carotenoids in plant cells. Previously, using mainly stationary measurements of photosensitized phosphorescence of singlet oxygen (1O2), we discovered that phytofluene efficiently generates 1O2 in aerated solution and therefore, can serve as a source of the UV photodynamic stress in living cells [Ashikhmin et al., Biochemistry (Moscow), 2020, 85, 773]. In the present paper, by using novel pulsed light emitting diodes (LEDs), aerated hexafluorobenzene as a solvent and time-resolved measurements of 1O2 phosphorescence we confirmed that phytofluene efficiently photosensitizes 1O2 formation. The quantum yield of this process according to the novel experiments is about 0.4. An ability to generate 1O2 was also found in aerated solutions of ζ-carotene although the quantum yield of this process is 30-fold lower that in phytofluene solutions. Both carotenoids were found to quench 1O2 in the dark with the quenching rate constants equal to (3.6 ± 0.9)×107 and (2.1 ± 0.2)×108 M-1s-1, respectively. To our knowledge, the rate constant of 1O2 quenching by ζ-carotene has been reported in the present paper for the first time. It follows from the data obtained that the rate constants of 1O2 quenching by both carotenoids are much (by 2-3 orders of magnitude) smaller than the rate constant of the diffusion-limited biomolecular reactions. Hence, both carotenoids are weak protectors against 1O2 oxidative activity. It is more likely that they are potential promoters of photodynamic stress in living cells.


Assuntos
Oxigênio Singlete , zeta Caroteno , Oxigênio Singlete/química , Carotenoides/química , Solventes , Oxigênio
12.
Int J Biol Macromol ; 214: 664-671, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35753519

RESUMO

Natural water-soluble carotenoproteins are promising antioxidant nanocarriers for biomedical applications. The Carotenoid-Binding Protein from silkworm Bombyx mori (BmCBP) is responsible for depositing carotenoids in cocoons. This determines the silk coloration, which is relevant for sericulture for four thousand years. While BmCBP function is well-characterized by molecular genetics, its structure and carotenoid-binding mechanism remain to be studied. To facilitate this, here we report on successful production of soluble BmCBP in Escherichia coli, its purification and characterization. According to CD spectroscopy and SEC-MALS, this protein folds into a ~ 27-kDa monomer capable of dose-dependent binding of lutein, a natural BmCBP ligand, in vitro. Binding leads to a >10 nm red-shift of the carotenoid absorbance and quenches tryptophan fluorescence of BmCBP. Using zeaxanthin, a close lutein isomer that can be stably produced in engineered E.coli strains, we successfully reconstitute the BmCBP holoform and characterize its properties. While BmCBP successfully matures into the holoform, BmCBP-zeaxanthin complexes are contaminated by the apoform. We demonstrate that the yield of the holoform can be increased by adding bovine serum albumin during cell lysis and that the remaining BmCBP apoform is efficiently removed using hydroxyapatite chromatography. Bacterial production of BmCBP paves the way for its structural studies and applications.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Carotenoides/metabolismo , Proteínas de Transporte/química , Escherichia coli/genética , Escherichia coli/metabolismo , Luteína/química , Zeaxantinas/metabolismo
13.
Plant Physiol Biochem ; 167: 91-100, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34340026

RESUMO

The relationship between photosynthesis, pigment accumulation, and the expression of key light-regulated genes in Solanum lycopersicum hp-1, hp-2 and hp-1.2 photomorphogenetic mutants under conditions of high-intensity light (2000 µm (photons) m-2s-1) was studied. The hp-2 mutant (LA3006) and the hp-1 mutants (LA4012 and LA3538) are deficient in DET1 (De-etiolated 1 and DDB1 (DNA DAMAGE-BINDING PROTEIN 1), respectively, which are components of the CDD complex (COP10, DDB1, DET1). HP mutants are superproducers of various pigments and are sensitive to light. We have shown that HIL (high-intensity light) causes a decrease in PSII activity after 24 and 72 h of irradiation, which was partially restored after 72 h in the WT. The photosynthetic rate noticeably decreased only in LA4012 and LA3538 after 24 h of irradiation. After 72 h, the photosynthetic rate decreased in all mutants, with the exception of hp-1.2 LA0279, but the decrease was most noticeable in LA4012, yet significant changes in the respiration rate were absent. The LA0279 mutant was more capable of accumulating anthocyanin in the cells of the subepidermal parenchyma and chlorenchyma, as well as in the cells at the base of large multicellular glandular trichomes and in the mesophyll. Another important difference was the accumulation of increased amounts of antheraxanthin and phenolic compounds in the leaves of LA0279 after 72 h of HIL irradiation. Unlike LA4012, LA3006, LA0279, and LA3538 sowed a significant increase in the expression levels of CHS, HY5, and FLS genes after 24 h, which may be one of the reasons for the higher adaptive potential of those three mutants. In addition to that in LA3538, strong light-induced stress led to an increased level of flavonol synthase (FLS) expression in the LA3006, LA0279, and LA4012 mutants. We hypothesize that the photosynthetic apparatus (PA) of the LA0279 mutant, which is deficient in the DET1 and DDB1 genes, is most adapted to prolonged HIL. Most likely, the resistance of PA mutants to HIL is due to a variety of factors, which, in addition to the redistribution of carotenoids, may include morphological features associated with the accumulation of anthocyanin in the epidermis, subepidermal layer, mesophyll and trichomes of leaves and with an increase in leaf thickness.


Assuntos
Solanum lycopersicum , Carotenoides/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fotossíntese/genética , Pigmentação , Folhas de Planta/metabolismo
14.
FEMS Microbiol Lett ; 368(16)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34390245

RESUMO

A mesophilic filamentous anoxygenic phototrophic bacterium, designated M50-1, was isolated from a microbial mat of the Chukhyn Nur soda lake (northeastern Mongolia) with salinity of 5-14 g/L and pH 8.0-9.3. The organism is a strictly anaerobic phototrophic bacterium, which required sulfide for phototrophic growth. The cells formed short undulate trichomes surrounded by a thin sheath and containing gas vesicles. Motility of the trichomes was not observed. The cells contained chlorosomes. The antenna pigments were bacteriochlorophyll d and ß- and γ-carotenes. Analysis of the genome assembled from the metagenome of the enrichment culture revealed all the enzymes of the 3-hydroxypropionate bi-cycle for autotrophic CO2 assimilation. The genome also contained the genes encoding a type IV sulfide:quinone oxidoreductase (sqrX). The organism had no nifHDBK genes, encoding the proteins of the nitrogenase complex responsible for dinitrogen fixation. The DNA G + C content was 58.6%. The values for in silico DNA‒DNA hybridization and average nucleotide identity between M50-1 and a closely related bacterium 'Ca. Chloroploca asiatica' B7-9 containing bacteriochlorophyll c were 53.4% and 94.0%, respectively, which corresponds to interspecies differences. Classification of the filamentous anoxygenic phototrophic bacterium M50-1 as a new 'Ca. Chloroploca' species was proposed, with the species name 'Candidatus Chloroploca mongolica' sp. nov.


Assuntos
Bactérias Anaeróbias , Chloroflexi , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Chloroflexi/classificação , Chloroflexi/genética , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Sulfetos/metabolismo
15.
J Phys Chem B ; 125(14): 3538-3545, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33818091

RESUMO

The excitation energy transfer (EET) from the bacteriochlorophyll (BChl) Soret band to the second excited state(s) (S2) of carotenoids in pigment-protein complexes of purple bacteria was investigated. The efficiency of EET was determined, based on fluorescence excitation and absorption spectra of chromatophores, peripheral light-harvesting complexes (LH2), core complexes (LH1-RC), and pigments in solution. Carotenoid-containing and carotenoid-less samples were compared: LH1-RC and LH2 from Allochromatium minutissimum, Ectothiorhodospira haloalkaliphila, and chromatophores from Rhodobacter sphaeroides and Rhodospirillum rubrum wild type and carotenoid-free strains R-26 and G9. BChl-to-carotenoid EET was absent, or its efficiency was less than the accuracy of the measurements of ∼5%. Quantum chemical calculations support the experimental results: The transition dipole moments of spatially close carotenoid/BChl pairs were found to be nearly orthogonal. The structural arrangements suggest that Soret EET may be lacking for the studied systems, however, EET from carotenoids to Qx appears to be possible.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Bacterioclorofilas , Carotenoides , Chromatiaceae , Ectothiorhodospira , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteobactérias/metabolismo , Rhodobacter sphaeroides/metabolismo , Espectrometria de Fluorescência
16.
FEMS Microbiol Lett ; 367(19)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33016309

RESUMO

Chloroflexales bacteria are mostly known as filamentous anoxygenic phototrophs that thrive as members of the microbial communities of hot spring cyanobacterial mats. Recently, we described many new Chloroflexales species from non-thermal environments and showed that mesophilic Chloroflexales are more diverse than previously expected. Most of these species were isolated from aquatic environments of mid-latitudes. Here, we present the comprehensive characterization of a new filamentous multicellular anoxygenic phototrophic Chloroflexales bacterium from an Arctic coastal environment (Kandalaksha Gulf, the White Sea). Phylogenomic analysis and 16S rRNA phylogeny indicated that this bacterium belongs to the Oscillochloridaceae family as a new species. We propose that this species be named 'Candidatus Oscillochloris kuznetsovii'. The genomes of this species possessed genes encoding sulfide:quinone reductase, the nitrogenase complex and the Calvin cycle, which indicate potential for photoautotrophic metabolism. We observed only mesophilic anaerobic anoxygenic phototrophic growth of this novel bacterium. Electron microphotography showed the presence of chlorosomes, polyhydroxyalkanoate-like granules and polyphosphate-like granules in the cells. High-performance liquid chromatography also revealed the presence of bacteriochlorophylls a, c and d as well as carotenoids. In addition, we found that this bacterium is present in benthic microbial communities of various coastal environments of the Kandalaksha Gulf.


Assuntos
Chloroflexi/classificação , Regiões Árticas , Chloroflexi/genética , Chloroflexi/metabolismo , Meio Ambiente , Processos Fototróficos , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
17.
Int J Syst Evol Microbiol ; 70(8): 4591-4601, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32658637

RESUMO

Gram-negative, aerobic, chemo-organotrophic and bacteriochlorophyll a-containing bacterial strains, KEBCLARHB70RT, KAMCLST3051 and KAMCLST3152, were isolated from the thalli of Cladonia arbuscula and Cladonia stellaris lichens. Cells from the strains were coccoid and reproduced by binary division. They were motile at the early stages of growth and utilized sugars and alcohols. All strains were psychrophilic and acidophilic, capable of growth between pH 3.5 and 7.5 (optimum, pH 5.5), and at 4-30 °C (optimum, 10-15 °C). The major fatty acids were C18 : 1 ω7c and C18 : 0; the lipids were phosphatidylcholines, phosphatidylethanolamines, phosphatidic acids, phosphatidylglycerol, glycolipids, diphosphatidylglycerol and polar lipids with an unknown structure. The quinone was Q-10. The DNA G+C content was 67.8 mol%. Comparative 16S rRNA gene analysis together with other data, supported that the strains, KEBCLARHB70RT, KAMCLST3051 and KAMCLST3152 belonged to the same species. Whole genome analysis of the strain KEBCLARHB70RT and average amino acid identity values confirmed its distinctive phylogenetic position within the family Acetobacteraceae. Phenotypic, ecological and genomic characteristics distinguished strains KEBCLARHB70RT, KAMCLST3051 and KAMCLST3152 from all genera in the family Acetobacteraceae. Therefore, we propose a novel genus and a novel species, Lichenicoccus roseus gen. nov., sp. nov., for these novel Acetobacteraceae members. Strain KEBCLARHB70RT (=KCTC 72321T=VKM B-3305T) has been designated as the type strain.


Assuntos
Acetobacteraceae/classificação , Líquens/microbiologia , Filogenia , Acetobacteraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Bacterioclorofila A , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
18.
Life (Basel) ; 10(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423065

RESUMO

Photosystem II (PSII)-enriched membranes retain the original PSII architecture in contrast to PSII cores or PSII supercomplexes, which are usually isolated from Chlamydomonas reinhardtii. Here, we present data that fully characterize the structural and functional properties of PSII complexes in isolated PSII-enriched membranes from C. reinhardtii. The preparations were isolated from wild-type (WT) and CAH3-deficient mutant cia3 as the influence of CAH3 on the PSII function was previously proposed. Based on the equal chlorophyll content, the PSII-enriched membranes from WT and cia3 have the same amount of reaction centers (RCs), cytochrome b559, subunits of the water-oxidizing complex, Mn ions, and carotenes. They differ in the ratio of other carotenoids, the parts of low/intermediate redox forms of cytochrome b559, and the composition of outer light-harvesting complexes. The preparations had 40% more chlorophyll molecules per RC compared to higher plants. Functionally, PSII-enriched membranes from WT and cia3 show the same photosynthetic activity at optimal pH 6.5. However, the preparations from cia3 contained more closed RCs even at pH 6.5 and showed more pronounced suppression of PSII photosynthetic activity at shift pH up to 7.0, established in the lumen of dark-adapted cells. Nevertheless, the PSII photosynthetic capacities remained the same.

19.
Phys Chem Chem Phys ; 21(46): 25707-25719, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31720635

RESUMO

To prevent irreversible damage caused by an excess of incident light, the photosynthetic machinery of many cyanobacteria uniquely utilizes the water-soluble orange carotenoid protein (OCP) containing a single keto-carotenoid molecule. This molecule is non-covalently embedded into the two OCP domains which are interconnected by a flexible linker. The phenomenon of OCP photoactivation, causing significant changes in carotenoid absorption in the orange and red form of OCP, is currently being thoroughly studied. Numerous additional spectral forms of natural and synthetic OCP-like proteins have been unearthed. The optical properties of carotenoids are strongly determined by the interaction of their electronic states with vibrational modes, the surrounding protein matrix, and the solvent. In this work, the effects of the pigment-protein interaction and vibrational relaxation in OCP were studied by computational simulation of linear absorption. Taking into account Raman spectroscopy data and applying the multimode Brownian oscillator model as well as the cumulant expansion technique, we have calculated a set of characteristic microparameters sufficient to demarcate different carotenoid states in OCP forms, using the model carotenoids spheroidene and spheroidenone in methanol/acetone solution as benchmarks. The most crucial microparameters, which determine the effect of solvent and protein environment, are the Huang-Rhys factors and the frequencies of C[double bond, length as m-dash]C and C-C stretching modes, the low-frequency mode and the FWHM due to inhomogeneous line broadening. Considering the difference of linear absorption between spheroidene and spheroidenone, which remarkably resembles the photoinduced changes of OCP absorption, and applying quantum chemical calculations, we discuss structural and functional determinants of carotenoid binding proteins.


Assuntos
Proteínas de Bactérias/química , Carotenoides/química , Simulação de Dinâmica Molecular , Teoria Quântica , Água/química , Estrutura Molecular , Solubilidade
20.
FEMS Microbiol Lett ; 366(8)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31054244

RESUMO

We present the results of a study of mesophilic anoxygenic phototrophic Chloroflexota bacteria from Mechigmen hot spring (the Chukotka Peninsula) and Siberia. According to 16S rRNA phylogenetic analysis, these bacteria belong to Oscillochloris trichoides. However, sequencing the draft genome of the bacterium from the Chukotka and analysis of the average nucleotide identity, as well as in silico DNA-DNA hybridization, reveal that this bacterium belongs to a novel species within the Oscillochloris genus. We, therefore, propose 'Candidatus Oscillochloris fontis' as a novel taxon to represent this mesophilic alkaliphilic anaerobic anoxygenic phototrophic bacterium. Spectrophotometry and high-performance liquid chromatography analysis show that the bacterium possesses bacteriochlorophylls c and a, as well as lycopene, ß-carotene and γ-carotene. In addition, transmission electron microscopy shows the presence of chlorosomes, polyhydroxyalkanoate- and polyphosphate-like granules. The genome of 'Ca. Oscillochloris fontis' and the Siberian strains of Oscillochloris sp. possess the key genes for nitrogenase complex (nifH) and ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbL), as previously described for O. trichoides DG-6. The results presented here, and previously published data, show that Oscillochloris bacteria from different aquatic environments have the potential for CO2 and N2 fixation. Additionally, we describe a new primer system for the detection of RuBisCo form I.


Assuntos
Chloroflexi/classificação , Genoma Bacteriano , Processos Fototróficos , Filogenia , Anaerobiose , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/isolamento & purificação , Bacterioclorofilas/análise , Chloroflexi/isolamento & purificação , Fontes Termais/microbiologia , Pennsylvania , RNA Ribossômico 16S/genética , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...