Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38319458

RESUMO

The aim of the current study was to screen and identify heavy metal (chromium, cadmium, and lead) associated bacteria from petroleum-contaminated soil of district Muzaffarabad, Azad Jammu and Kashmir, Pakistan to develop ecofriendly technology for contaminated soil remediation. The petroleum-contaminated soil was collected from 99 different localities of district Muzaffarabad and the detection of heavy metals via an atomic absorption spectrometer. The isolation and identification of heavy metals-associated bacteria were done via traditional and molecular methods. Resistogram and antibiogram analysis were also performed using agar well diffusion and agar disc diffusion methods. The isolated bacteria were classified into species, i.e., B. paramycoides, B. albus, B. thuringiensis, B. velezensis, B. anthracis, B. pacificus Burkholderia arboris, Burkholderia reimsis, Burkholderia aenigmatica, and Streptococcus agalactiae. All heavy metals-associated bacteria showed resistance against both high and low concentrations of chromium while sensitive towards high and low concentrations of lead in the range of 3.0 ± 0.0 mm to 13.0 ± 0.0 mm and maximum inhibition was recorded when cadmium was used. Results revealed that some bacteria showed sensitivity towards Sulphonamides, Norfloxacin, Erythromycin, and Tobramycin. It was concluded that chromium-resistant bacteria could be used as a favorable source for chromium remediation from contaminated areas and could be used as a potential microbial filter.

2.
Micromachines (Basel) ; 14(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512596

RESUMO

The current study attempts to evaluate the formation, morphology, and physico-chemical properties of zinc oxide nanoparticles (ZnO NPs) synthesized from Clinopodium vulgare extract at different pH values and to investigate their antimicrobial and biomedical application potential. The reduction of zinc ions to ZnO NPs was determined by UV spectra, which revealed absorption peaks at 390 nm at pH 5 and 348 nm at pH 9, respectively. The spherical morphology of the nanoparticles was observed using scanning electron microscopy (SEM), and the size was 47 nm for pH 5 and 45 nm for pH 9. Fourier-transformed infrared spectroscopy (FTIR) was used to reveal the presence of functional groups on the surface of nanoparticles. The antibacterial activity was examined against Staphylococcus aureus, Streptococcus pyogenes, and Klebsiella pneumonia via the agar-well diffusion method. Comparatively, the highest activities were recorded at pH 9 against all bacterial strains, and among these, biogenic ZnO NPs displayed the maximum inhibition zone (i.e., 20.88 ± 0.79 mm) against S. aureus. ZnO NPs prepared at pH 9 exhibited the highest antifungal activity of 80% at 25 mg/mL and antileishmanial activity of 82% at 400 mg/mL. Altogether, ZnO NPs synthesized at pH 9 show promising antimicrobial potential and could be used for biomedical applications.

3.
Braz. j. biol ; 81(3): 584-591, July-Sept. 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153386

RESUMO

Abstract The flying fox (Pteropus giganteus) also familiar with the name of the greater Indian fruit Bat belongs to the order Chiroptera and family Pteropodidae. Current research emphasis on the DNA barcoding of P. giganteus in Azad Jammu Kashmir. Bat sequences were amplified and PCR products were sequenced and examined by bioinformatics software. Congeneric and conspecific, nucleotide composition and K2P nucleotide deviation, haplotype diversity and the number of haplotypes were estimated. The analysis showed that all of the five studied samples of P. giganteus had low G contents (G 19.8%) than C (27.8%), A (25.1%) and T (27.3%) contents. The calculated haplotype diversity was 0.60% and the mean intraspecific K2P distance was 0.001% having a high number of transitional substitutions. The study suggested that P. giganteus (R=0.00) do not deviate from the neutral evolution. It was determined from the conclusion that this mtDNA gene is a better marker for identification of Bat species than nuclear genes due to its distinctive characteristics and may serve as a landmark for the identification of interconnected species at the molecular level and in the determination of population genetics.


Resumo A raposa-voadora (Pteropus giganteus), também conhecida como morcego indiano, pertence à ordem dos Chiroptera e à família Pteropodidae. A presente pesquisa dá ênfase ao código de barras de DNA de P. giganteus em Azad Jammu e Caxemira. Sequências genéticas dos morcegos foram amplificadas, e os produtos de PCR foram sequenciados e examinados por software de bioinformática. De espécies congenérica e coespecífica, foram estimados composição nucleotídica e desvio de nucleotídeos K2P, diversidade de haplótipos e número de haplótipos. A análise mostrou que todas as cinco amostras estudadas de P. giganteus apresentaram baixos teores de G (19,8%) em comparação com C (27,8%), A (25,1%) e T (27,3%). A diversidade de haplótipos calculada foi de 0,60%, e a distância média intraespecífica de K2P foi de 0,001%, com um elevado número de substituições transicionais. O estudo sugeriu que P. giganteus (R = 0,00) não se desviou da evolução neutra. É possível concluir que o gene mtDNA é um marcador favorável para identificação de espécies de morcegos do que genes nucleares por causa de suas características distintivas e pode servir como um marco para a identificação de espécies interconectadas em nível molecular e para a determinação genética de populações.


Assuntos
Animais , Quirópteros/genética , Paquistão , Haplótipos/genética , DNA Mitocondrial , Código de Barras de DNA Taxonômico
4.
Braz J Biol ; 81(3): 584-591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32785466

RESUMO

The flying fox (Pteropus giganteus) also familiar with the name of the greater Indian fruit Bat belongs to the order Chiroptera and family Pteropodidae. Current research emphasis on the DNA barcoding of P. giganteus in Azad Jammu Kashmir. Bat sequences were amplified and PCR products were sequenced and examined by bioinformatics software. Congeneric and conspecific, nucleotide composition and K2P nucleotide deviation, haplotype diversity and the number of haplotypes were estimated. The analysis showed that all of the five studied samples of P. giganteus had low G contents (G 19.8%) than C (27.8%), A (25.1%) and T (27.3%) contents. The calculated haplotype diversity was 0.60% and the mean intraspecific K2P distance was 0.001% having a high number of transitional substitutions. The study suggested that P. giganteus (R=0.00) do not deviate from the neutral evolution. It was determined from the conclusion that this mtDNA gene is a better marker for identification of Bat species than nuclear genes due to its distinctive characteristics and may serve as a landmark for the identification of interconnected species at the molecular level and in the determination of population genetics.


Assuntos
Quirópteros , Animais , Quirópteros/genética , Código de Barras de DNA Taxonômico , DNA Mitocondrial , Haplótipos/genética , Paquistão
5.
Environ Sci Pollut Res Int ; 26(4): 3909-3920, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30547340

RESUMO

Cadmium and mercury are among the most toxic and dangerous environmental pollutants that may cause fatal implications. Vitamin C is an important chain-breaking antioxidant and enzyme co-factor against heavy metals. The objective of the present study was to evaluate the toxicological effects of cadmium chloride, mercuric chloride, and their co-administration on biochemical parameters of blood serum and metal bioaccumulation in kidneys and also to elucidate the protective effect of vitamin C in rabbits against these metals. In the current research, cadmium chloride (1.5 mg/kg), mercuric chloride(1.2 mg/kg), and vitamin C (150 mg/kg of body weight) were orally administered to eight treatment groups of the rabbits (1, control; 2, vitamin; 3, CdCl2; 4, HgCl2; 5, vitamin + CdCl2; 6, vitamin + HgCl2; 7, CdCl2 + HgCl2, and 8, vitamin + CdCl2 + HgCl2). After the biometric measurements of all experimental rabbits, biochemical parameters viz. creatinine, cystatin C, uric acid, and alkaline phosphatase (ALP) and metal bioaccumulation were determined using commercially available kits and atomic absorption spectrophotometer, respectively. The levels of creatinine (28.3 ± 1.1 µmol/l), cystatin C (1932.5 ± 38.5 ηg/ml), uric acid (4.8 ± 0.1 mg/day), and ALP (51.6 ± 1.1 IU/l) were significantly (P < 0.05) increased due to administration of mercuric chloride but in the presence of vitamin C, the effects of mercuric chloride on creatinine (21.9 ± 1.4 µmol/l), cystatin C (1676.2 ± 42.2 ηg/ml), uric acid (3.9 ± 0.1 mg/day), and ALP (43.3 ± 0.8 IU/l) were less as compared to metal-exposed specimens. Similar results were found in rabbits treated with cadmium chloride and vitamin C and also with co-administration of both metals and vitamin C. Because of the bio-accumulative nature of cadmium chloride and mercuric chloride, these metals were accumulated in kidneys of rabbits, which might lead to deleterious effects. The results of the present study provide an insight into the toxicity of the cadmium chloride, mercuric chloride, and/or their combination on biochemical parameters as well as kidneys of the rabbits and the ameliorating potential of vitamin C against these metals is also evaluated.


Assuntos
Ácido Ascórbico/farmacologia , Cloreto de Cádmio/toxicidade , Rim/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Administração Oral , Fosfatase Alcalina/sangue , Animais , Antioxidantes/farmacologia , Cádmio/farmacocinética , Cádmio/toxicidade , Cloreto de Cádmio/administração & dosagem , Creatinina/sangue , Cistatina C/sangue , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Rim/metabolismo , Cloreto de Mercúrio/administração & dosagem , Mercúrio/farmacocinética , Mercúrio/toxicidade , Substâncias Protetoras/farmacologia , Coelhos , Ácido Úrico/sangue
6.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467449

RESUMO

Abstract The flying fox (Pteropus giganteus) also familiar with the name of the greater Indian fruit Bat belongs to the order Chiroptera and family Pteropodidae. Current research emphasis on the DNA barcoding of P. giganteus in Azad Jammu Kashmir. Bat sequences were amplified and PCR products were sequenced and examined by bioinformatics software. Congeneric and conspecific, nucleotide composition and K2P nucleotide deviation, haplotype diversity and the number of haplotypes were estimated. The analysis showed that all of the five studied samples of P. giganteus had low G contents (G 19.8%) than C (27.8%), A (25.1%) and T (27.3%) contents. The calculated haplotype diversity was 0.60% and the mean intraspecific K2P distance was 0.001% having a high number of transitional substitutions. The study suggested that P. giganteus (R=0.00) do not deviate from the neutral evolution. It was determined from the conclusion that this mtDNA gene is a better marker for identification of Bat species than nuclear genes due to its distinctive characteristics and may serve as a landmark for the identification of interconnected species at the molecular level and in the determination of population genetics.


Resumo A raposa-voadora (Pteropus giganteus), também conhecida como morcego indiano, pertence à ordem dos Chiroptera e à família Pteropodidae. A presente pesquisa dá ênfase ao código de barras de DNA de P. giganteus em Azad Jammu e Caxemira. Sequências genéticas dos morcegos foram amplificadas, e os produtos de PCR foram sequenciados e examinados por software de bioinformática. De espécies congenérica e coespecífica, foram estimados composição nucleotídica e desvio de nucleotídeos K2P, diversidade de haplótipos e número de haplótipos. A análise mostrou que todas as cinco amostras estudadas de P. giganteus apresentaram baixos teores de G (19,8%) em comparação com C (27,8%), A (25,1%) e T (27,3%). A diversidade de haplótipos calculada foi de 0,60%, e a distância média intraespecífica de K2P foi de 0,001%, com um elevado número de substituições transicionais. O estudo sugeriu que P. giganteus (R = 0,00) não se desviou da evolução neutra. É possível concluir que o gene mtDNA é um marcador favorável para identificação de espécies de morcegos do que genes nucleares por causa de suas características distintivas e pode servir como um marco para a identificação de espécies interconectadas em nível molecular e para a determinação genética de populações.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...