Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 128(23): 4757-67, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11731456

RESUMO

Delaminated neuroblasts in Drosophila function as stem cells during embryonic central nervous system development. They go through repeated asymmetric divisions to generate multiple ganglion mother cells, which divide only once more to produce postmitotic neurons. Snail, a zinc-finger transcriptional repressor, is a pan-neural protein, based on its extensive expression in neuroblasts. Previous results have demonstrated that Snail and related proteins, Worniu and Escargot, have redundant and essential functions in the nervous system. We show that the Snail family of proteins control central nervous system development by regulating genes involved in asymmetry and cell division of neuroblasts. In mutant embryos that have the three genes deleted, the expression of inscuteable is significantly lowered, while the expression of other genes that participate in asymmetric division, including miranda, staufen and prospero, appears normal. The deletion mutants also have much reduced expression of string, suggesting that a key component that drives neuroblast cell division is abnormal. Consistent with the gene expression defects, the mutant embryos lose the asymmetric localization of prospero RNA in neuroblasts and lose the staining of Prospero protein that is normally present in ganglion mother cells. Simultaneous expression of inscuteable and string in the snail family deletion mutant efficiently restores Prospero expression in ganglion mother cells, demonstrating that the two genes are key targets of Snail in neuroblasts. Mutation of the dCtBP co-repressor interaction motifs in the Snail protein leads to reduction of the Snail function in central nervous system. These results suggest that the Snail family of proteins control both asymmetry and cell division of neuroblasts by activating, probably indirectly, the expression of inscuteable and string.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila/embriologia , Drosophila/genética , Genes de Insetos , Neurônios/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas Tirosina Fosfatases , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular , Divisão Celular/genética , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neuropeptídeos , Proteínas Nucleares/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição da Família Snail , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética
2.
Gene ; 257(1): 1-12, 2000 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-11054563

RESUMO

The existence of homologous genes in diverse species is intriguing. A detailed comparison of the structure and function of gene families may provide important insights into gene regulation and evolution. An unproven assumption is that homologous genes have a common ancestor. During evolution, the original function of the ancestral gene might be retained in the different species which evolved along separate courses. In addition, new functions could have developed as the sequence began to diverge. This may also explain partly the presence of multipurpose genes, which have multiple functions at different stages of development and in different tissues. The Drosophila gene snail is a multipurpose gene; it has been demonstrated that snail is critical for mesoderm formation, for CNS development, and for wing cell fate determination. The related vertebrate Snail and Slug genes have also been proposed to participate in mesoderm formation, neural crest cell migration, carcinogenesis, and apoptosis. In this review, we will discuss the Snail/Slug family of regulators in species ranging from insect to human. We will present the protein structures, expression patterns, and functions based on molecular genetic analyses. We will also include the studies that helped to elucidate the molecular mechanisms of repression and the relationship between the conserved and divergent functions of these genes. Moreover, the studies may enable us to trace the evolution of this gene family.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Animais , Proteínas de Ligação a DNA/fisiologia , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neoplasias/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/fisiologia
3.
EMBO J ; 18(22): 6426-38, 1999 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-10562554

RESUMO

The Snail protein functions as a transcriptional regulator to establish early mesodermal cell fate. Later, in germ band-extended embryos, Snail is also expressed in most neuroblasts. Here we present evidence that this expression of Snail is required for central nervous system (CNS) development. The neural function of snail is masked by two closely linked genes, escargot and worniu. Both Escargot and Worniu contain zinc-finger domains that are highly homologous to that of Snail. Although not affecting expression of early neuroblast markers, the deletion of the region containing all three genes correlates with loss of expression of CNS determinants including fushi tarazu, pdm-2 and even-skipped. Transgenic expression of each of the three Snail family proteins can rescue efficiently the fushi tarazu defects, and partially the pdm-2 and even-skipped CNS patterns. These results demonstrate that the Snail family proteins have essential functions during embryonic CNS development, around the time of ganglion mother cell formation.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Sistema Nervoso/embriologia , Neurônios/fisiologia , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência Conservada , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/química , Embrião não Mamífero/fisiologia , Fatores de Transcrição Fushi Tarazu , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese , Fatores de Transcrição/química , Dedos de Zinco
5.
J Bacteriol ; 179(7): 2356-62, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9079923

RESUMO

In several genera of bacteria, the sigma54-RNA polymerase holoenzyme (E sigma54) is a minor form of RNA polymerase that is responsible for transcribing genes whose products are involved in diverse metabolic processes. E sigma54 binds to the promoters of these genes to form a closed promoter complex. An activator protein is required for the transition of this closed promoter complex to an open complex that is transcriptionally competent. In this study, the P22-based challenge phage system was used to investigate interactions between E sigma54 and the Rhizobium meliloti nifH promoter. Challenge phages were constructed in which the R. meliloti nifH promoter replaced the binding site for the Mnt protein, a repressor of the phage P22 ant gene. When a Salmonella typhimurium strain that overexpressed sigma54 was infected with these challenge phages, E sigma54 bound to the nifH promoter and repressed transcription of the ant gene as seen by the increased frequency of lysogeny. Following mutagenesis of challenge phages that carried the R. meliloti nifH promoter, mutant phages that could form plaques on an S. typhimurium strain that overexpressed sigma54 were isolated. These phages had mutations within the nifH promoter that decreased the affinity of the promoter for E sigma54. The mutations were clustered in seven highly conserved residues within the -12 and -24 regions of the nifH promoter.


Assuntos
Genes Bacterianos , Fixação de Nitrogênio/genética , Nitrogenase/genética , Oxirredutases , Regiões Promotoras Genéticas , Sinorhizobium meliloti/genética , Bacteriófagos/fisiologia , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Lisogenia , Biossíntese de Proteínas , Fator sigma/genética , Transcrição Gênica
6.
J Bacteriol ; 179(5): 1787-95, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9045842

RESUMO

The mercury resistance (mer) operon is transcribed from overlapping, divergent promoters: PR for the regulatory gene merR and P(TPCAD) for the structural genes merTPCAD. The dyadic binding site for MerR lies within the 19-bp spacer of the sigma70-dependent P(TPCAD). Unlike typical repressors, MerR does not exclude RNA polymerase from P(TPCAD) but rather forms an inactive complex with RNA polymerase at P(TPCAD) prior to addition of the inducer, the mercuric ion Hg(II). In this "active repression" complex, MerR prevents transcriptional initiation at merTPCAD until Hg(II) is added. When Hg(II) is added, MerR remains bound to the same position and activates transcription of merTPCAD by distorting the DNA of the spacer region. MerR also represses its own transcription from PR regardless of the presence or absence of Hg(II). To explore the role of MerR-RNA polymerase in these processes, we examined mutations in the sigma70 and alpha subunits of RNA polymerase, mutations known to influence other activators but not to impair transcription generally. We assessed the effects of these sigma70 and alpha mutants on unregulated P(TPCAD) and PR transcription (i.e., MerR-independent transcription) and on the two MerR-dependent processes: repression of P(TPCAD) and of PR and Hg(ll)-induced activation of P(TPCAD). Among the MerR-independent effects, we found that mutations in regions 2.1 and 4.2 of rpoD suppress the deleterious effects of nonoptimal promoter spacing. Some C-terminal rpoA mutants also have this property to a considerably lesser degree. Certain "spacer suppressor" variants of rpoA and of rpoD also interfere with the MerR-dependent repression of P(TPCAD) and PR. MerR-Hg(II)-mediated transcriptional activation of P(TPCAD) was also affected in an allele-specific manner by substitutions at position 596 of sigma70 and at positions 311 and 323 of alpha. Thus, certain changes in sigma70 or alpha render them either more or less effective in participating in the topologically novel transcriptional control effected by MerR at the divergent mer operons.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Mercúrio/farmacologia , Óperon , Salmonella typhimurium/genética , Fator sigma/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , DNA Bacteriano/genética , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Resistência Microbiana a Medicamentos/genética , Escherichia coli/enzimologia , Genes Bacterianos , Genes Reguladores , Dados de Sequência Molecular , Mutação , Mutação Puntual , Regiões Promotoras Genéticas , Salmonella typhimurium/enzimologia , Fator sigma/química , Fator sigma/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...