Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 161: 107572, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30885608

RESUMO

Diseases arising from misfolding of SLC6 transporters have been reported over recent years, e.g. folding-deficient mutants of the dopamine transporter and of the glycine transporter-2 cause infantile/juvenile Parkinsonism dystonia and hyperekplexia, respectively. Mutations in the coding sequence of the human creatine transporter-1 (hCRT-1/SLC6A8) gene result in a creatine transporter deficiency syndrome, which varies in its clinical manifestation from epilepsy, mental retardation, autism, development delay and motor dysfunction to gastrointestinal symptoms. Some of the mutations in hCRT-1 occur at residues, which are highly conserved across the SLC6 family. Here, we examined 16 clinically relevant hCRT-1 variants to verify the conjecture that they were misfolded and that this folding defect was amenable to correction. Confocal microscopy imaging revealed that the heterologously expressed YFP-tagged mutant CRTs were trapped in the endoplasmic reticulum (ER), co-localised with the ER-resident chaperone calnexin. In contrast, the wild type hCRT-1 reached the plasma membrane. Preincubation of transiently transfected HEK293 cells with the chemical chaperone 4-phenylbutyrate (4-PBA) restored ER export and surface expression of as well as substrate uptake by several folding-deficient CRT-1 mutants. A representative mutant (hCRT-1-P544L) was expressed in rat primary hippocampal neurons to verify pharmacochaperoning in a target cell: 4-PBA promoted the delivery of hCRT-1-P544L to the neurite extensions. These observations show that several folding-deficient hCRT-1 mutants can be rescued. This proof-of-principle justifies the search for additional pharmacochaperones to restore folding of 4PBA-unresponsive hCRT-1 mutants. Finally, 4-PBA is an approved drug in paediatric use: this provides a rationale for translating the current insights into clinical trials. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Assuntos
Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Creatina/deficiência , Deficiência Intelectual Ligada ao Cromossomo X/tratamento farmacológico , Proteínas do Tecido Nervoso/efeitos dos fármacos , Fenilbutiratos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Deficiências na Proteostase/tratamento farmacológico , Animais , Encefalopatias Metabólicas Congênitas/genética , Calnexina/metabolismo , Membrana Celular/metabolismo , Creatina/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Células HEK293 , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Neuritos/metabolismo , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Cultura Primária de Células , Deficiências na Proteostase/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...