Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 834: 155340, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460786

RESUMO

Arctic wildlife is facing multiple stressors, including increasing plastic pollution. Seabirds are intrinsic to marine ecosystems, but most seabird populations are declining. We lack knowledge on plastic ingestion in many arctic seabird species, and there is an urgent need for more information to enable risk assessment and monitoring. Our study aimed to investigate the occurrence of plastics in glaucous gulls (Larus hyperboreus) breeding on Svalbard. The glaucous gull is a sentinel species for the health of the arctic marine ecosystem, but there have been no studies investigating plastic occurrence in this species since 1994. As a surface feeder and generalist living in an area with high human activity on Svalbard, we expected to find plastic in its stomach. We investigated for plastic >1 mm and documented plastic ingestion for the first time in glaucous gulls, with a frequency of occurrence of 14.3% (n = 21). The plastics were all identified as user plastics and consisted of polypropylene (PP) and polystyrene (PS). Our study provides new quantitative and qualitative data on plastic burden and polymer type reported in a standardized manner establishing a reference point for future research and monitoring of arctic gulls on national and international levels.


Assuntos
Charadriiformes , Poluentes Ambientais , Animais , Regiões Árticas , Documentação , Ingestão de Alimentos , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais/análise , Humanos , Plásticos
2.
Environ Pollut ; 303: 119099, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278585

RESUMO

The aim of this study is to assess the occurrence of human litter ingested by arctic foxes (Vulpes lagopus) caught in Svalbard, Norway, in winter when scavenging is at its highest. Twenty arctic fox stomachs and intestines were examined for human litter and plastic using the protocol from the Oslo-Paris Convention (OSPAR) for monitoring plastic ingestion by the northern fulmar (Fulmarus glacialis) (human litter and plastic >1 mm). The arctic foxes had ingested human litter at a low frequency (15%, 3 out of 20 foxes). Despite the low sample size, we do not regard ingestion of human litter as an immediate threat to the arctic fox population in Svalbard.


Assuntos
Monitoramento Ambiental , Raposas , Animais , Regiões Árticas , Aves , Humanos , Noruega , Plásticos , Svalbard
3.
Environ Int ; 152: 106458, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33677245

RESUMO

This study investigated concentrations of phthalates (diesters of phthalic acids) in blubber/adipose tissue of blue whales (Balaenoptera musculus), fin whales (Balaenoptera physalus), bowhead whales (Balaena mysticetus) and polar bears (Ursus maritimus) sampled in the Svalbard Archipelago (extending westward in the case of bowhead whales). Additionally, total concentrations (free and conjugated forms) of eight phthalate monoester metabolites were analysed in plasma of polar bears. Bis(2-ethylhexyl) phthalate (DEHP) was the only phthalate quantified among the 12 phthalates investigated. This compound was present in 6/7 fin whale samples, 4/7 blue whale samples, 2/5 bowhead whale samples and 1/12 polar bear samples. DEHP concentrations ranged from <20-398 ng/g wet weight. Phthalate metabolites, mono-n-butyl phthalate and monoisobutyl phthalate, were found in low concentrations (<1.2 ng/mL) in some of the polar bear samples. In vitro reporter gene assays were used to assess transcriptional activity of fin whale peroxisome proliferator-activated receptor gamma (PPARG), glucocorticoid receptor (GR) and the thyroid hormone receptor beta (THRB) by DEHP and diisononyl phthalate (DiNP). Due to the high degree of similarity of the ligand binding domain in the THRB and PPARG among whales, polar bears and humans, the transactivation results also apply for these species. DEHP showed both agonistic and antagonistic effects towards whale THRB at considerably higher concentrations than measured in the study animals; DiNP was a weak agonist of whale THRB. No significant agonistic or antagonistic effects were detected for DEHP or DiNP for whale PPARG, whereas DEHP and DiNP decreased basal luciferase activity mediated by whale GR at several test concentrations. In conclusion, DEHP was detected in the blubber of marine mammals from the Norwegian Arctic and it appears to have potential to modulate the transcriptional activity of whale THRB, but current DEHP concentrations do not modulate the function of the studied nuclear receptors in adipose tissue of blue whales, fin whales, bowhead whales or polar bears sampled from the Norwegian Arctic.


Assuntos
Baleia Comum , Ácidos Ftálicos , Animais , Regiões Árticas , Ácidos Ftálicos/toxicidade , Svalbard
4.
Environ Toxicol Chem ; 40(3): 820-831, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369782

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are associated with several disrupted physiological and endocrine parameters. Regarding endocrine mechanisms, laboratory studies suggest that PFAS could disrupt the thyroid hormone system and alter circulating thyroid hormone concentrations. Thyroid hormones play a ubiquitous role-controlling thermoregulation, metabolism, and reproduction. However, evidence for disruption of thyroid hormones by PFAS remains scarce in wildlife. The present study investigated the associations between concentrations of PFAS, thyroid hormones, and body condition in an arctic seabird, the black-legged kittiwake (Rissa tridactyla). We collected blood from kittiwakes sampled in Svalbard, Norway (2013 and 2014). Plasma samples were analyzed for total thyroxine (TT4) and total triiodothyronine (TT3) concentrations; detected PFAS included branched and linear (lin) C8 perfluoroalkyl sulfonates (i.e., perfluoroctane sulfonate [PFOS]) and C9 -C14 perfluoroalkyl carboxylates (PFCAs). The dominant PFAS in the kittiwakes were linPFOS and C11 - and C13 -PFCAs. Generally, male kittiwakes had higher concentrations of PFAS than females. We observed positive correlations between linPFOS, C10 -PFCA, and TT4 in males, whereas in females C12-14 -PFCAs were positively correlated to TT3. Interestingly, we observed contrasted correlations between PFAS and body condition; the direction of the relationship was sex-dependent. Although these results show relationships between PFAS and circulating thyroid hormone concentrations in kittiwakes, the study design does not allow for concluding on causal relationships related to effects of PFAS on the thyroid hormone system. Future experimental research is required to quantify this impact of PFAS on the biology of kittiwakes. The apparently different associations among PFAS and body condition for males and females are puzzling, and more research is required. Environ Toxicol Chem 2021;40:820-831. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Charadriiformes , Poluentes Ambientais , Fluorocarbonos , Animais , Regiões Árticas , Feminino , Fluorocarbonos/análise , Masculino , Hormônios Tireóideos
5.
Environ Sci Pollut Res Int ; 28(2): 1643-1655, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32851520

RESUMO

Although ingestion of plastic by tubenosed seabirds has been documented regularly, identification of the polymer composition of these plastics has rarely been described. Polymer assessment may assist in identifying sources and may indicate risks from additives occurring in specific types of polymers. Using known test materials, two identification methods Fourier transform infrared spectroscopy and near infrared spectroscopy (FTIR and NIR) were compared. Although both methods were found to be similarly suitable for identification of plastic polymers, a significant difference was observed in identification of natural materials. FTIR frequently misclassified natural materials as being a synthetic polymer. Within our results, an 80% match score threshold functioned best to distinguish between natural items and synthetics. Using NIR, the historical variability of plastics ingested by northern fulmars (Fulmarus glacialis) from the Dutch sector of the North Sea was analysed for three time periods since the 1980s. For the more recent decade, variability between fulmars from different regions in the northeast Atlantic was investigated. Regional variation was further explored by analysing plastics obtained from the stomachs of southern hemisphere relatives of the fulmar (southern fulmar, cape petrel, snow petrel) and Wilson's storm petrel. Results show that proportional abundance of polymer types in these seabirds is closely related to the plastic categories that they ingest (e.g. pellets, foam, fragments). The uptake of different plastic categories and related polymer types most likely reflects spatial and temporal variations in availability rather than ingestion preferences of the birds.


Assuntos
Monitoramento Ambiental , Conteúdo Gastrointestinal , Animais , Aves , Mar do Norte , Plásticos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...