Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1253418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044986

RESUMO

Background: Tonsillar cancer is caused by high-risk human papillomavirus (HPV), tobacco smoking, and alcohol abuse. Aspects of the patient's immune response to this disease have arisen as prognostic factors and treatment targets, reflecting differences in the type and protein expression profile of immune cells. Because tonsillar cancers are heterogenous lesions such data need to be spatially resolved. Methods: In this study, we aim to explore inter-patient and intra-tumoral sources of variation in tonsillar cancer using immunofluorescence and targeted spatial proteomics to interrogate a cohort of 105 patients. Furthermore, we assess prognostic factors and elucidate molecular targets. We have used CD8, CD11c, and Pan-cytokeratin (PanCK) to quantify and locate immune cells driving antigen-specific cellular immunity. Guided by immunofluorescence information, we selected 355 CD8+, CD11c+, or PanCK+ areas inside and outside (i.e., stroma) cancer-cell islets, to quantify 43 immune-related proteins using digital spatial profiling. Results: Quantitative analysis of immunofluorescence in combination with clinical data revealed that the abundance of total CD8+ cells and CD8+ cells infiltrating cancer-cell islets, respectively, were associated with higher 5-year disease-free survival and overall survival, independently of HPV-status and clinical stage. Comparison of CD8+ cells inside and outside cancer-cell islets revealed an upregulation of effector CD8+ T-cell and immune checkpoint molecules in the former. Among these, the expression of PD-L1 by CD8+ T-cells was associated with lower all-cause mortality in a univariate proportional hazards model. Similarly, a comparison of tumor boundary and stroma CD11c+ cells showed upregulation of both co-stimulatory and immune checkpoint molecules with proximity to tumor cell islets. Conclusion: Our findings highlight the relevance of analyzing aspects of tumor micro-architecture in the search of prognostic markers and molecular targets for tonsillar cancer. The abundance of intra-tumoral CD8+ T-cells can be considered a positive predictive marker for tonsillar cancer, while the significance of PD-L1 expression by intra-tumoral CD8+ T-cells warrants further evaluation. Location-based differences in CD8+ and CD11c+ cells suggest an immune cell-altering effect on the tumor microenvironment, and grant new insight into which cells that can be targeted by novel therapeutic agents.

2.
Cancers (Basel) ; 15(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046826

RESUMO

Nasopharyngeal cancer (NPC) is a malignant tumor. In a recent publication, we described the presence and distribution of CD8+ T cells in NPC and used the information to identify 'inflamed', 'immune-excluded', and 'desert' immune phenotypes, where 'inflamed' and 'immune-excluded' NPCs were correlated with CD8 T cell infiltration and survival. Arguably, more detailed and, in particular, spatially resolved data are required for patient stratification and for the identification of new treatment targets. In this study, we investigate the phenotype of CD45+ leukocytes in the previously analyzed NPC samples by applying multiplexed tissue analysis to assess the spatial distribution of cell types and to quantify selected biomarkers. A total of 47 specified regions-of-interest (ROIs) were generated based on CD45, CD8, and PanCK morphological staining. Using the GeoMx® Digital Spatial Profiler (DSP), 49 target proteins were digitally quantified from the selected ROIs of a tissue microarray consisting of 30 unique NPC biopsies. Protein targets associated with B cells (CD20), NK cells (CD56), macrophages (CD68), and regulatory T cells (PD-1, FOXP3) were most differentially expressed in CD45+ segments within 'immune-rich cancer cell islet' regions of the tumor (cf. 'surrounding stromal leukocyte' regions). In contrast, markers associated with suppressive populations of myeloid cells (CD163, B7-H3, VISTA) and T cells (CD4, LAG3, Tim-3) were expressed at a higher level in CD45+ segments in the 'surrounding stromal leukocyte' regions (cf. 'immune-rich cancer cell islet' regions). When comparing the three phenotypes, the 'inflamed' profile (cf. 'immune-excluded' and 'desert') exhibited higher expression of markers associated with B cells, NK cells, macrophages, and myeloid cells. Myeloid markers were highly expressed in the 'immune-excluded' phenotype. Granulocyte markers and immune-regulatory markers were higher in the 'desert' profile (cf. 'inflamed' and 'immune-excluded'). In conclusion, this study describes the spatial heterogeneity of the immune microenvironment in NPC and highlights immune-related biomarkers in immune phenotypes, which may aid in the stratification of patients for therapeutic purposes.

3.
Front Immunol ; 13: 1087843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741389

RESUMO

The incidence of human papillomavirus-positive (HPV+) tonsillar cancer has been sharply rising during the last decades. Myeloid cells represent an appropriate therapeutic target due to their proximity to virus-infected tumor cells, and their ability to orchestrate antigen-specific immunity, within the tonsil. However, the interrelationship of steady-state and inflammatory myeloid cell subsets, and their impact on patient survival remains unexplored. Here, we used single-cell RNA-sequencing to map the myeloid compartment in HPV+ tonsillar cancer. We observed an expansion of the myeloid compartment in HPV+ tonsillar cancer, accompanied by interferon-induced cellular responses both in dendritic cells (DCs) and monocyte-macrophages. Our analysis unveiled the existence of four DC lineages, two macrophage polarization processes, and their sequential maturation profiles. Within the DC lineages, we described a balance shift in the frequency of progenitor and mature cDC favoring the cDC1 lineage in detriment of cDC2s. Furthermore, we observed that all DC lineages apart from DC5s matured into a common activated DC transcriptional program involving upregulation of interferon-inducible genes. In turn, the monocyte-macrophage lineage was subjected to early monocyte polarization events, which give rise to either interferon-activated or CXCL-producing macrophages, the latter enriched in advanced tumor stages. We validated the existence of most of the single-cell RNA-seq clusters using 26-plex flow cytometry, and described a positive impact of cDC1 and interferon-activated DCs and macrophages on patient survival using gene signature scoring. The current study contributes to the understanding of myeloid ontogeny and dynamics in HPV-driven tonsillar cancer, and highlights myeloid biomarkers that can be used to assess patient prognosis.


Assuntos
Infecções por Papillomavirus , Neoplasias Tonsilares , Humanos , Células Dendríticas , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/patologia , Neoplasias Tonsilares/patologia , Células Mieloides , Interferons , Análise de Célula Única
4.
Cancers (Basel) ; 13(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771506

RESUMO

Human papillomavirus (HPV) is the main causal agent of tonsillar cancer (TC) and HPV+ TC has a favorable prognosis compared to HPV- disease. In this study, we examined aspects of the tumor microenvironment of TC, focusing on T-cells, dendritic cells (DC), and macrophages. Fresh biopsies of TC and the contralateral healthy tonsil (HT) were obtained from 20 patients, analyzed by multiparameter flow cytometry, and assessed against a detailed HPV-status. Additionally, RNA-sequencing data from 38 TC samples available in the public database, The Cancer Genome Atlas (TCGA), were explored, focusing on the same leukocyte populations. HPV+ TC featured increased levels of CD8+ T-cells and antigen-presenting cells (cf. HPV- TC and HT, respectively). In HPV+ TC, CD8+ T-cell frequencies correlated to DC levels independently of tumor stage, HPV 16 copy number, and E7 oncogene expression as well as frequencies of other leukocytes. Similarly, RNA sequencing data were explored by dividing the HPV+ TCs according to predefined CD8+ T-cell scores in silico. Higher levels of genes expressed by antigen-presenting cells and effector T-cells, such as immune checkpoints and cytokines, were detected in the CD8HIGH HPV+ TC samples (cf. CD8LOW HPV+ TC). In conclusion, CD8HIGH HPV+ TC displays a unique inflammatory profile associated with increased effector T-cell functions and the presence of antigen-presenting cells in the tumor microenvironment. Further studies are warranted to assess if this information can be used on an individual basis to aid in prognosis and treatment decisions.

5.
Hum Immunol ; 82(12): 976-981, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34511272

RESUMO

Dendritic cells (DCs) with capacity of antigen cross-presentation are of key interest for immunotherapy against cancer as they can induce antigen-specific cytotoxic T lymphocyte (CTL) responses. This study describes frequencies of DC subtypes in human tonsils and lymph nodes, and phenotypic aspects that may be targeted by adjuvant measures. From human tonsils and neck lymph nodes, DCs were identified through flow cytometry, and subsets of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) were investigated. Maturity status was assessed and surface receptors with CTL-promoting potentials were studied. CD123+ pDCs as well as CD1c+, CD141+, and CD1c-CD141- mDCs were detected in tonsils and lymph nodes. Both sites featured a similar presence of DC subsets, with CD123+ pDC being dominant and CD141+ mDCs least frequent. Based on CD80/CD86 expression, all DC subtypes featured a low degree of maturation. Expression of pattern recognition receptors (PRRs) CD206, CD207, DC-SIGN, TLR2, and TLR4, as well as the chemokine receptor XCR1, indicated DC subset-specific receptor profiles. We conclude that tonsils and lymph nodes share common features in terms of DC subset frequency and maturation as well as PRR and XCR1 expression pattern. Our work suggests that both sites may be considered for vaccine deposition in DC-mediated immunotherapy.


Assuntos
Células Dendríticas/metabolismo , Linfonodos/citologia , Tonsila Palatina/citologia , Receptores de Reconhecimento de Padrão/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígenos CD40/metabolismo , Células Dendríticas/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/metabolismo , Adulto Jovem
6.
Sci Rep ; 8(1): 8030, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795118

RESUMO

Dendritic cells (DCs) have a key role in orchestrating immune responses and are considered important targets for immunotherapy against cancer. In order to develop effective cancer vaccines, detailed knowledge of the micromilieu in cancer lesions is warranted. In this study, flow cytometry and human transcriptome arrays were used to characterize subsets of DCs in head and neck squamous cell tonsillar cancer and compare them to their counterparts in benign tonsils to evaluate subset-selective biomarkers associated with tonsillar cancer. We describe, for the first time, four subsets of DCs in tonsillar cancer: CD123+ plasmacytoid DCs (pDC), CD1c+, CD141+, and CD1c-CD141- myeloid DCs (mDC). An increased frequency of DCs and an elevated mDC/pDC ratio were shown in malignant compared to benign tonsillar tissue. The microarray data demonstrates characteristics specific for tonsil cancer DC subsets, including expression of immunosuppressive molecules and lower expression levels of genes involved in development of effector immune responses in DCs in malignant tonsillar tissue, compared to their counterparts in benign tonsillar tissue. Finally, we present target candidates selectively expressed by different DC subsets in malignant tonsils and confirm expression of CD206/MRC1 and CD207/Langerin on CD1c+ DCs at protein level. This study descibes DC characteristics in the context of head and neck cancer and add valuable steps towards future DC-based therapies against tonsillar cancer.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Tonsila Palatina/metabolismo , Neoplasias Tonsilares/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Tonsila Palatina/patologia , Neoplasias Tonsilares/imunologia , Neoplasias Tonsilares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...