Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(6): e62157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38993461

RESUMO

Mobile health (mHealth) interventions have emerged as a promising approach for cardiovascular disease (CVD) prevention and management. The proliferation of smartphones and wearable devices enables convenient access to health monitoring tools, educational resources, and communication with healthcare providers. mHealth interventions encompass mobile apps, wearables, and telehealth services that empower users to monitor vital signs, adhere to medication, and adopt healthier lifestyles. Their effectiveness hinges on user engagement, leveraging behavioral science principles and gamification strategies. While mHealth offers advantages such as personalized support and increased reach, it faces challenges pertaining to data privacy, security concerns, and resistance from healthcare providers. Robust encryption and adherence to regulations like the Health Insurance Portability and Accountability Act (HIPAA) are crucial for safeguarding sensitive health data. Integrating mHealth into clinical workflows can enhance healthcare delivery, but organizational adjustments are necessary. The future of mHealth is closely intertwined with artificial intelligence (AI), enabling remote monitoring, predictive algorithms, and data-driven insights. Tech giants are incorporating advanced health-tracking capabilities into their devices, paving the way for personalized wellness approaches. However, mHealth grapples with ethical dilemmas surrounding data ownership, privacy breaches, and inadvertent data capture. Despite its potential, mHealth necessitates a concerted effort to overcome obstacles and ensure ethical, secure, and practical implementation. Addressing technical challenges, fostering standardization, and promoting equitable access are pivotal for unlocking the transformative impact of mHealth on cardiovascular health and reducing the global burden of CVD.

2.
Cureus ; 16(6): e61810, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975366

RESUMO

Cardiovascular diseases remain a leading cause of mortality among women, yet they are often underestimated and insufficiently addressed. This narrative review delves into the gender disparities in cardiovascular health, underscoring the critical importance of recognizing and addressing the unique challenges women face. The article explores the pathophysiological differences between men and women, highlighting the role of hormonal factors, such as estrogen and menopause, in conferring cardioprotection or increasing risk. It examines the complexities of diagnosis and assessment, including differences in symptom presentation, diagnostic accuracy, and the challenges of interpreting non-invasive testing in women. The review also highlights the need for tailored risk assessment and prevention strategies, incorporating sex-specific conditions and pregnancy-related factors. It emphasizes the importance of lifestyle modifications and interventions, as well as the potential benefits of personalized treatment approaches, considering gender-specific variations in medication responses and cardiac interventions. Furthermore, the article sheds light on the impact of psychosocial and sociocultural factors, such as gender norms, mental health considerations, and access to healthcare, on women's cardiovascular health. It also addresses the significant gaps and challenges in research, including the historical underrepresentation of women in clinical trials and the lack of sex- and gender-sensitive studies. Finally, the review advocates for a multidisciplinary approach, involving patient-centered care, shared decision-making, and collaboration among policymakers, stakeholders, and healthcare systems. This comprehensive strategy aims to enhance awareness, prevention, diagnosis, and treatment of cardiovascular disease in women, ultimately improving health outcomes and reducing the burden of this often overlooked epidemic.

3.
Int Microbiol ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286952

RESUMO

Direct combustion of sulfur-enriched liquid fuel oil causes sulfur oxide emission, which is one of the main contributors to air pollution. Biodesulfurization is a promising and eco-friendly method to desulfurize a wide range of thiophenic compounds present in fuel oil. Previously, numerous bacterial strains from genera such as Rhodococcus, Corynebacterium, Gordonia, Nocardia, Mycobacterium, Mycolicibacterium, Paenibacillus, Shewanella, Sphingomonas, Halothiobacillus, and Bacillus have been reported to be capable of desulfurizing model thiophenic compounds or fossil fuels. In the present study, we report a new desulfurizing bacterium, Tsukamurella sp. 3OW, capable of desulfurization of dibenzothiophene through the carbon-sulfur bond cleavage 4S pathway. The bacterium showed a high affinity for the hydrocarbon phase and broad substrate specificity towards various thiophenic compounds. The overall genome-related index analysis revealed that the bacterium is closely related to Tsukamurella paurometabola species. The genomic pool of strain 3OW contains 57 genes related to sulfur metabolism, including the key dszABC genes responsible for dibenzothiophene desulfurization. The DBT-adapted cells of the strain 3OW displayed significant resilience and viability in elevated concentrations of crude oil. The bacterium showed a 19 and 37% reduction in the total sulfur present in crude and diesel oil, respectively. Furthermore, FTIR analysis indicates that the oil's overall chemistry remained unaltered following biodesulfurization. This study implies that Tsukamurella paurometabola species, previously undocumented in the context of biodesulfurization, has good potential for application in the biodesulfurization of petroleum oils.

4.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37895877

RESUMO

Curcumin's applications in the treatment of conditions including osteoarthritis, dementia, malignancies of the pancreas, and malignancies of the intestines have drawn increasing attention. It has several wonderful qualities, including being an anti-inflammatory agent, an anti-mutagenic agent, and an antioxidant, and has substantially reduced inherent cytotoxicity outcomes. Although curcumin possesses multiple known curative properties, due to its limited bioavailability, it is necessary to develop efficient strategies to overcome these hurdles. To establish an effective administration method, various niosomal formulations were optimized using the Box-Behnken design and assessed in the current investigation. To examine the curcumin niosomes, zeta sizer, zeta potential, entrapment efficiency, SEM, antioxidant potential, cytotoxicity, and release studies were performed. The optimized curcumin niosomes exhibited an average particle size of 169.4 nm, a low PDI of 0.189, and high entrapment efficiency of 85.4%. The release profile showed 79.39% curcumin after 24 h and had significantly higher antioxidant potential as compared with that of free curcumin. The cytotoxicity results of curcumin niosomes presented increased mortality in human ovarian cancer A2780.

5.
Front Cell Infect Microbiol ; 13: 1253095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731820

RESUMO

Purpose: The current study aimed to develop a topical herbal emulgel containing Carthamus tinctorius L. (CT) oil extract, which has been scientifically proven for its antibacterial and antioxidant activities for the ailment of bacterial skin infections. Method: The CT emulgel was formulated by response surface methodology (RSM) and was evaluated by various parameters like extrudability, spreadability, pH, viscosity, and antibacterial and antioxidant activities. Molecular docking was also performed using AutoDock. Results: Among all formulated CT emulgels, F9 and F8 were optimized. Optimized formulations had shown good spreadability and extrudability characteristics. Sample F8 had % inhibition of 42.131 ± 0.335, 56.720 ± 0.222, and 72.440 ± 0.335 at different concentrations. Sample F9 had % inhibition of 26.312 ± 0.280, 32.461 ± 0.328, and 42.762 ± 0.398 at concentrations of 250 µg/ml, 500 µg/ml, and 1,000 µg/ml, respectively, which shows that both samples F8 and F9 have significant antioxidant potential. Optimized CT emulgels F8 and F9 had significant antibacterial activity against Staphylococcus aureus and Escherichia coli at p-value = 0.00, the Emulgel-F8 shows zone of inhibition of 24 mm for E-coli and 19 mm for S-aureus. Emulgel-F9 shows zone of inhibition of 22 mm for E-coli and 15 mm for S-aureus while pure CT- Oil extract shows zone of inhibition of 25 mm for E-coli and 20 mm for S-aureus and ciprofloxacin used as standard shows 36mm zone of inhibition against both E-coli and S-aureus. The comparative investigation through molecular docking binding affinities and interactions of ligands with various target proteins provides insights into the molecular processes behind ligand binding and may have significance for drug discovery and design for the current study. Conclusion: The current study suggests that C. tinctorius L.-based emulgel has good antioxidant and antibacterial activities against E. coli for the treatment of bacterial skin infections.


Assuntos
Carthamus tinctorius , Dermatopatias Bacterianas , Antioxidantes/farmacologia , Escherichia coli , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus , Extratos Vegetais/farmacologia
6.
Saudi Pharm J ; 31(8): 101695, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520120

RESUMO

The current research was to develop nanoparticles based on Mimosa pudica mucilage (MPM) that could encapsulate losartan potassium (LP). Nanoparticles (NPs) produced through ionic-gelation method; the polymerization of the mucilage carried out using calcium chloride as cross-linking agent. The MPMLP-NPs demonstrated vastly enhanced pharmaceutical characteristics, presented discrete surface with spherical shape of 198.4-264.6 nm with PDI ranging 0.326-0.461 and entrapment efficiency was in the range of 80.65 ± 0.82-90.79 ± 0.96%. FTIR and DSC indicated the stability of drug during the formulation of nanoparticles. An acute oral toxicity investigation found no significant alterations in behavior and histopathology criteria. The MPMLP-NPs formulation revealed the better rates and sustained effect as assessed with the commercial product. Moreover, low dose of MPMLP-NPs showed similar anti-hypertensive effect as assessed with the marketed tablet.

7.
Colloids Surf B Biointerfaces ; 206: 111976, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34280682

RESUMO

The main objective of this study was to investigate polyethylene imine (PEI) based stereocomplexed nanomiceles for intracellular delivery of rifampicin against Mycobacterium bovis (M. bovis) and their in vitro-in vivo evaluation. The formation of Rifampicin (Rif) loaded isotactic (PEI-g-PLLA and PEI-g-PDLA) and stereocomplexed nanomicelles (StM) of PEI conjugated poly l- and poly d-lactic acid via self-assembly was thoroughly explored. Synthesis of polymer graft was confirmed via FTIR and NMR. A 2-fold reduction in CMC of StM was observed along with decreased particle size in comparison to isotactic nanomicelles. In vitro, StM exhibited a higher encapsulation efficiency and 84 % of drug release in 48 h. at pH 5 with minimal initial burst release in comparison to isotactic nanomicelles. Minimum inhibitory concentration (MIC) of StM was found to be four folds lower in contrast to isotactic nanomicelles. Ex vivo studies exhibited a better uptake of StM and minimum cytotoxicity in murine alveolar macrophages. Following oral administration in mice, drug loaded StM exhibited highest distribution in macrophage rich organs, longer half-life, AUC, AUMC and MRT in comparison to isotactic nanomicelles indicating maximum bioavailability and efficacy of StM. In vivo antimycobacterial activity also demonstrated a higher reduction (2.38fold) in M. bovis CFU at reduced dosing frequency by drug loaded StM in comparison to control group. Thus, StM can be regarded as a simple, stable, efficient, and biocompatible carrier system for delivery of rifampicin to intracellular M. bovis with added advantage of reduced dosing frequency and improved patient compliance.


Assuntos
Mycobacterium bovis , Rifampina , Animais , Portadores de Fármacos , Liberação Controlada de Fármacos , Camundongos , Micelas , Polietilenoimina , Rifampina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...