Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 956298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072320

RESUMO

Food security is facing a major threat from salinity and there is a need to develop salt tolerant crop varieties to ensure that the demand for food from the world's increasing population is met. Salinity mostly occurs in arid and semi-arid regions. It may cause many adverse physiological effects on plants, i.e., toxic ion accumulation, disturbed osmotic potential, and decreased crop yield. The present study aimed to investigate the morphological, physiological, biochemical, and genetic parameters of wheat genotypes under salt stress. Six wheat genotypes were screened for salt tolerance at the seedling and maturity stage. Seeds were sown at 0 and 150 mM of salinity level. Biochemical traits, i.e., shoot/root fresh and dry weight, chlorophyll a/b and total chlorophyll contents, shoot nitrogen, shoot phosphorus, proline, and carbohydrates were measured. Wheat genotypes showed a significant increase in free amino acids, shoot nitrogen, and total soluble proteins under saline conditions. Higher Na+/K+ ratio and free amino acids were estimated under 150 mM NaCl treatment in Pasban-90 and found to be the most salt-tolerant genotype. By contrast, reduced proline, total chlorophyll, and Na+/K+ ratio were found in Kohistan-97 marking it to be sensitive to stress. Expression analysis of HKTs genes was performed to validate the results of two contrasting genotypes. The differential expression of HKT2; 1 and HKT2; 3 explained the tissue and genotype specific epigenetic variations. Our findings indicated that these selected genotypes can be further used for molecular studies to find out QTLs/genes related to salinity. This suggests that, in contrasting wheat genotypes, there is a differentially induced defense response to salt stress, indicating a functional correlation between salt stress tolerance and differential expression pattern in wheat.

2.
Front Plant Sci ; 13: 898823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646037

RESUMO

Maize is one of the most important field crops considering its utilization as food, feed, fodder, and biofuel. However, the sustainability of its production is under serious threat of heat and drought stresses, as these stresses could hamper crop growth, causing a significant loss to kernel yield. The research study was carried out at Maize and Millets Research Institute, Yusafwala-Sahiwal for two consecutive spring seasons (2019-20 and 2020-21) under a split-split plot design. The current study explained the individual and combined effects of drought and heat stresses on morphology, phenology, physiology, reactive oxygen species (stocktickerROS), antioxidant status, and kernel quality traits in four indigenous (YH-5482, YH-5427, YH-5404, and YH-1898) and one multinational maize hybrid (P-1543). Stress treatments, i.e., drought, heat, and drought+heat, were applied ten days before tasseling and lasted for 21 days. The results revealed the incidence of oxidative stress due to overproduction of Hydrogen peroxide; H2O2 (control: 1.9, heat+drought: 5.8), and Malondialdehyde; stocktickerMDA (control: 116.5, heat+drought: 193), leading to reduced photosynthetic ability (control: 31.8, heat:16.5), alterations in plant morphology, decrease in kernel yield (control: 10865 kg ha-1, heat+drought: 5564 kg ha-1), and quality-related traits. Although all the stress treatments induced the accumulation of stress-responsive osmolytes and enzymatic antioxidants to cope with the negative impact of osmotic stress, the effect of combined drought + heat stress was much higher. The overall performance of indigenous maize hybrid YH-5427 was much more promising than the other hybrids, attributed to its better tolerance of drought and heat stresses. Such stress tolerance was attributed to maintaining photosynthetic activity, a potent antioxidant and osmolyte-based defense mechanisms, and minimum reductions in yield-related traits, which assured the maximum kernel yield under all stress treatments.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35329090

RESUMO

Dry fruits and nuts are nutritious foods with several health-promoting properties. However, they are prone to contamination with aflatoxins at all stages of production and storage. The present study aimed to determine the natural occurrence of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), and total aflatoxins (AFT) in dates, pistachios, and walnuts collected from four districts of South Punjab (Pakistan), and to assess the associated health risks as estimated by dietary exposure and the Margin of Exposure (MoE) determinations. The contents of AFB1 and AFT in these food products were monitored during storage under three different conditions (open-air, hermetically closed jars, and refrigeration at 4 °C) to determine the most efficient conditions in preventing aflatoxin accumulation. HPLC-fluorescence analysis of 60 samples of these products for aflatoxin contamination showed that 52 (86.7%) samples were contaminated at different levels, with a maximum of 24.2 ng/g. The overall (all samples) mean concentrations of AFB1, AFB2, AFG1, AFG2, and AFT were 3.39 ± 2.96, 1.39 ± 1.68, 1.63 ± 1.48. 1.12 ± 1.23, and 7.54 ± 6.68, respectively. The Estimated Daily Intake (EDI) and MoE of aflatoxins through the consumption of the products ranged from 0.06 ng/kg bw/day to 2.0 ng/kg bw/day and from 84.84 to 2857.13, respectively, indicating that consumers are at high health risk. Significant differences were recorded between aflatoxin levels in the samples stored under different storage conditions, with storage under refrigeration (4 °C) being the most effective in controlling aflatoxin accumulation, although storage in closed jars was also efficient and offers a more flexible alternative to retailers. The findings of the study urge official authorities of Pakistan to implement appropriate regulatory and control measures and surveillance program to alleviate the potential public health risks associated with the consumption of dry fruits and nuts in the scope of their increased consumption.


Assuntos
Aflatoxinas , Frutas , Aflatoxina B1/análise , Aflatoxinas/análise , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos/análise , Frutas/química , Paquistão , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...