Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Calcif Tissue Int ; 114(4): 409-418, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315223

RESUMO

During endochondral bone formation, growth plate chondrocytes are differentially regulated by various factors and hormones. As the cellular phenotype changes, the composition of the extracellular matrix is altered, including the production and composition of matrix vesicles (MV) and their cargo of microRNA. The regulatory functions of these MV microRNA in the growth plate are still largely unknown. To address this question, we undertook a targeted bioinformatics approach. A subset of five MV microRNA was selected for analysis based on their specific enrichment in these extracellular vesicles compared to the parent cells (miR-1-3p, miR-22-3p, miR-30c-5p, miR-122-5p, and miR-133a-3p). Synthetic biotinylated versions of the microRNA were produced using locked nucleic acid (LNA) and were transfected into rat growth plate chondrocytes. The resulting LNA to mRNA complexes were pulled down and sequenced, and the transcriptomic data were used to run pathway analysis pipelines. Bone and musculoskeletal pathways were discovered to be regulated by the specific microRNA, notably those associated with transforming growth factor beta (TGFß) and Wnt pathways, cell differentiation and proliferation, and regulation of vesicles and calcium transport. These results can help with understanding the maturation of the growth plate and the regulatory role of microRNA in MV.


Assuntos
MicroRNAs , Transcriptoma , Ratos , Animais , Condrócitos/metabolismo , Lâmina de Crescimento/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular
3.
J Clin Periodontol ; 50(12): 1658-1669, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855275

RESUMO

AIM: To determine the effects of RVX-208, a selective bromodomain and extra-terminal domain (BET) inhibitor targeting bromodomain 2 (BD2), on periodontal inflammation and bone loss. MATERIALS AND METHODS: Macrophage-like cells (RAW264.7) and human gingival epithelial cells were challenged by Porphyromonas gingivalis (Pg) with or without RVX-208. Inflammatory gene expression and cytokine production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RAW264.7 cells were induced to osteoclast differentiation. After RVX-208 treatment, osteoclast differentiation was evaluated by histology, tartrate-resistant-acid-phosphatase (TRAP) activity and the expression of osteoclast-specific genes. The effect of RVX-208 on osteoclast transcriptome was studied by RNA sequencing. Periodontitis was induced in rats by ligature and local RVX-208 treatment was administered every other day. Alveolar bone loss was measured by micro-computed tomography. RESULTS: RVX-208 inhibited inflammatory gene expression and cytokine production in Pg-infected cells. Osteoclast differentiation was inhibited by RVX-208, as evidenced by reduced osteoclast number, TRAP activity and osteoclast-specific gene expression. RVX-208 displayed a more selective and less profound suppressive impact on transcriptome compared with pan-BET inhibitor, JQ1. RVX-208 administration prevented the alveolar bone loss in vivo. CONCLUSIONS: RVX-208 regulated both upstream (inflammatory cytokine production) and downstream (osteoclast differentiation) events that lead to periodontal tissue destruction, suggesting that it may be a promising 'epi-drug' for the prevention of periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Ratos , Humanos , Animais , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/patologia , Microtomografia por Raio-X , Inflamação/tratamento farmacológico , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Periodontite/patologia , Osteoclastos , Citocinas
4.
Calcif Tissue Int ; 112(4): 493-511, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840756

RESUMO

Growth plate chondrocytes are regulated by numerous factors and hormones as they mature during endochondral bone formation, including transforming growth factor beta-1 (TGFb1), bone morphogenetic protein 2 (BMP2), insulin-like growth factor-1 (IFG1), parathyroid hormone and parathyroid hormone related peptide (PTH, PTHrP), and Indian hedgehog (IHH). Chondrocytes in the growth plate's growth zone (GC) produce and export matrix vesicles (MVs) under the regulation of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3]. 1α,25(OH)2D3 regulates MV enzyme composition genomically and 1α,25(OH)2D3 secreted by the cells acts on the MV membrane nongenomically, destabilizing it and releasing MV enzymes. This study examined the regulatory role 1α,25(OH)2D3 has over production and packaging of microRNA (miRNA) into MVs by GC cells and the release of miRNA by direct action on MVs. Costochondral cartilage GC cells were treated with 1α,25(OH)2D3 and the miRNA in the cells and MVs sequenced. We also treated MVs with 1α,25(OH)2D3 and determined if the miRNA was released. To assess whether MVs can act directly with chondrocytes and if this is regulated by 1α,25(OH)2D3, we stained MVs with a membrane dye and treated GC cells with them. 1α,25(OH)2D3 regulated production and packaging of a unique population of miRNA into MVs compared to the vehicle control population. 1α,25(OH)2D3 treatment of MVs did not release miRNA. Stained MVs were endocytosed by GC cells and this was increased with 1α,25(OH)2D3 treatment. This study adds new regulatory roles for 1α,25(OH)2D3 with respect to packaging and transport of MV miRNAs.


Assuntos
MicroRNAs , MicroRNAs/metabolismo , Proteínas Hedgehog/metabolismo , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Células Cultivadas
5.
Cells ; 11(10)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35626656

RESUMO

Matrix vesicles are key players in the development of the growth plate during endochondral bone formation. They are involved in the turnover of the extracellular matrix and its mineralization, as well as being a vehicle for chondrocyte communication and regulation. These extracellular organelles are released by the cells and are anchored to the matrix via integrin binding to collagen. The exact function and makeup of the vesicles are dependent on the zone of the growth plate in which they are produced. Early studies defined their role as sites of initial calcium phosphate deposition based on the presence of crystals on the inner leaflet of the membrane and subsequent identification of enzymes, ion transporters, and phospholipid complexes involved in mineral formation. More recent studies have shown that they contain small RNAs, including microRNAs, that are distinct from the parent cell, raising the hypothesis that they are a distinct subset of exosomes. Matrix vesicles are produced under complex regulatory pathways, which include the action of steroid hormones. Once in the matrix, their maturation is mediated by the action of secreted hormones. How they convey information to cells, either through autocrine or paracrine actions, is now being elucidated.


Assuntos
Calcinose , Vesículas Extracelulares , Calcificação Fisiológica , Calcinose/metabolismo , Matriz Extracelular/metabolismo , Hormônios/metabolismo , Humanos , Osteogênese
6.
Calcif Tissue Int ; 109(4): 455-468, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33950267

RESUMO

Matrix vesicles (MVs) are extracellular organelles produced by growth plate cartilage cells in a zone-specific manner. MVs are similar in size to exosomes, but they are tethered to the extracellular matrix (ECM) via integrins. Originally associated with matrix calcification, studies now show that they contain matrix processing enzymes and microRNA that are specific to their zone of maturation. MVs produced by costochondral cartilage resting zone (RC) chondrocytes are enriched in microRNA 503 whereas those produced by growth zone (GC) chondrocytes are enriched in microRNA 122. MVs are packaged by chondrocytes under hormonal and factor regulation and release of their contents into the ECM is also under hormonal control, suggesting that their microRNA might have a regulatory role in growth plate proliferation and maturation. To test this, we selected a subset of these enriched microRNAs and transfected synthetic mimics back into RC and GC cells. Transfecting growth plate chondrocytes with select microRNA produced a broad range of phenotypic responses indicating that MV-based microRNAs are involved in the regulation of these cells. Specifically, microRNA 122 drives both RC and GC cells toward a proliferative phenotype, stabilizes the matrix and inhibits differentiation whereas microRNA 22 exerts control over regulatory factor production. This study demonstrates the strong regulatory capability possessed by unique MV enriched microRNAs on growth plate chondrocytes and their potential for use as therapeutic agents.


Assuntos
Lâmina de Crescimento , MicroRNAs , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos , Matriz Extracelular , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley
7.
Steroids ; 142: 43-47, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233620

RESUMO

Endochondral bone formation is a precise and highly ordered process whose exact regulatory framework is still being elucidated. Multiple regulatory pathways are known to be involved. In some cases, regulation impacts gene expression, resulting in changes in chondrocyte phenotypic expression and extracellular matrix synthesis. Rapid regulatory mechanisms are also involved, resulting in release of enzymes, factors and micro RNAs stored in extracellular matrisomes called matrix vesicles. Vitamin D metabolites modulate endochondral development via both genomic and rapid membrane-associated signaling pathways. 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] acts through the vitamin D receptor (VDR) and a membrane associated receptor, protein disulfide isomerase A3 (PDIA3). 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] affects primarily chondrocytes in the resting zone (RC) of the growth plate, whereas 1α,25(OH)2D3 affects cells in the prehypertrophic and upper hypertrophic cell zones (GC). This includes genomically directing the cells to produce matrix vesicles with zone specific characteristics. In addition, vitamin D metabolites produced by the cells interact directly with the matrix vesicle membrane via rapid signal transduction pathways, modulating their activity in the matrix. The matrix vesicle payload is able to rapidly impact the extracellular matrix via matrix processing enzymes as well as providing a feedback mechanism to the cells themselves via the contained micro RNAs.


Assuntos
Desenvolvimento Ósseo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Animais , Humanos
8.
Sci Rep ; 8(1): 3609, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483516

RESUMO

Chondrocytes at different maturation states in the growth plate produce matrix vesicles (MVs), membrane organelles found in the extracellular matrix, with a wide range of contents, such as matrix processing enzymes and receptors for hormones. We have shown that MVs harvested from growth zone (GC) chondrocyte cultures contain abundant small RNAs, including miRNAs. Here, we determined whether RNA also exists in MVs produced by less mature resting zone (RC) chondrocytes and, if so, whether it differs from the RNA in MVs produced by GC cells. Our results showed that RNA, small RNA specifically, was present in RC-MVs, and it was well-protected from RNase by the phospholipid membrane. A group of miRNAs was enriched in RC-MVs compared RC-cells, suggesting that miRNAs are selectively packaged into MVs. High throughput array and RNA sequencing showed that ~39% miRNAs were differentially expressed between RC-MVs and GC-MVs. Individual RT-qPCR also confirmed that miR-122-5p and miR-150-5p were expressed at significantly higher levels in RC-MVs compared to GC-MVs. This study showed that growth plate chondrocytes at different differentiation stages produce different MVs with different miRNA contents, further supporting extracellular vesicle miRNAs play a role as "matrisomes" that mediate the cell-cell communication in cartilage and bone development.


Assuntos
Condrócitos/citologia , Condrócitos/metabolismo , Lâmina de Crescimento/citologia , MicroRNAs/metabolismo , Animais , Diferenciação Celular/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...