Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(5): 127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38585410

RESUMO

Endophytic fungi have emerged as a significant source of natural products with remarkable bioactivities. Recent research has identified numerous antioxidant molecules among the secondary metabolites of endophytic fungi. These organisms, whether unicellular or micro-multicellular, offer the potential for genetic manipulation to enhance the production of these valuable antioxidant compounds, which hold promise for promoting health, vitality, and various biotechnological applications. In this study, we provide a critical review of methods for extracting, purifying, characterizing, and estimating the total antioxidant capacity (TAC) of endophytic fungi metabolites. While many endophytes produce metabolites similar to those found in plants with established symbiotic associations, we also highlight the existence of novel metabolites with potential scientific interest. Additionally, we discuss how advancements in nanotechnology have opened new avenues for exploring nanoformulations of endophytic metabolites in future studies, offering opportunities for diverse biological and industrial applications.

2.
PLoS One ; 18(5): e0284210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200359

RESUMO

Oral antidiabetic agents including the peroxisome proliferator-activated receptor gamma (PPARγ) agonists are available for the clinical management of diabetes mellitus (DM) but most are characterized by many adverse effects. In this study, we explore the antidiabetic properties of phytoconstituents from Trigonellafeonumgraecum (Fabaceae) as potential agonist of PPARγ; using in silico molecular docking, molecular mechanics generalized surface area (MM/GBSA)free binding energy prediction, Pharmacophore modeling experiment, and Pharmacokinetic/ toxicity analysis. One hundred and forty (140) compounds derived from Trigonellafeonumgraecum were screened by molecular docking against protein target PDB 3VI8. Results obtained from binding affinity (BA) and that of binding free energy (BFE) revealed five 5 compounds; arachidonic acid (CID_10467, BA -10.029, BFE -58.9), isoquercetin (CID_5280804, BA -9.507kcal/mol, BFE -56.33), rutin (CID_5280805, BA -9.463kcal/mol, BFE -56.33), quercetin (CID_10121947, BA -11.945kcal/mol, BFE -45.89) and (2S)-2-[[4-methoxy-3-[(pyrene-1-carbonylamino)methyl]phenyl]methyl]butanoic acid (CID_25112371, BA -10.679kcal/mol, BFE -45.73); and were superior to the standard; Rosiglitazone with a docking score of -7.672. Hydrogen bonding was notable in the protein-ligand complex interaction, with hydrophobic bond, polar bond and pipi stacking also observed. Their Pharmacokinetic/ toxicity profile showed varying druggable characteristics, but; arachidonic acid had the most favorable characteristics. These compounds are potential agonists of PPARγ and are considered as antidiabetic agents after successful experimental validation.


Assuntos
Diabetes Mellitus , Trigonella , Ácido Araquidônico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacóforo , PPAR gama/metabolismo , Trigonella/metabolismo , Humanos
3.
Heliyon ; 9(4): e15173, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113785

RESUMO

Chemicals used for storage majorly possess insecticidal activities - deterring destructive insect pests and microorganisms from stored agricultural produce. Despite the controversy about their safety, local farmers and agro-wholesalers still predominantly use these chemicals in developing countries, especially Africa, to ensure an all-year supply of agriproducts. These chemicals could have short- or long-term effects. Despite the state-of-the-art knowledge, factors such as poor education and awareness, limited agricultural subventions, quests for cheap chemicals, over-dosage, and many more are the possible reasons for these toxic chemicals' setback and persistent use in developing countries. This paper provides an up-to-date review of the environmental and ecological effects, as well as the health impacts arising from the indiscriminate use of toxic chemicals in agriproducts. Existing data link pesticides to endocrine disruption, genetic mutations, neurological dysfunction, and other metabolic disorders, apart from the myriad of acute effects. Finally, this study recommended several naturally sourced preservatives as viable alternatives to chemical counterparts and emphasized the invaluable role of education and awareness programs in mitigating the use in developing nations for a sustainable society.

4.
Futur J Pharm Sci ; 9(1): 28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035528

RESUMO

Background: Despite the invasiveness of the Hepatitis B infection, its vaccines are only formulated with FDA-approved alum-based adjuvants, which poorly elicit a lasting immune response, hence the need for a more effective adjuvant system. This study evaluated the immunogenicity and toxicity of eggshell membranes (ESM) when administered as an adjuvant for the recombinant HBV vaccine (rHBsAg) in albino mice. Differential white blood cell analysis, as well as the titer measurement of Immunoglobulin G, subclass G1 and G2a on indirect ELISA, was performed to measure the immune-modulatory potentials of ESM. Moreover, analysis of the liver marker enzyme (AST and ALT) and body/liver weights was performed to ascertain the toxicity level of ESM. Finally, Immuno-informatic analysis was used to investigate the immune-modulatory potential of individual member proteins of ESM. Results: Our results showed a significant improvement in the experimental group's lymphocyte count after boost-dose administration compared to the controls, whereas there was no significant change in the granulocyte population. Furthermore, the formulations (ESM-rHBsAg) significantly improved IgG and IgG1 titers after each successive immunization. Body/liver weight and liver function showed ESM non-toxic to mice. The immunoinformatic analysis discovered ovalbumin, lysozyme-C, and UFM-1 as the member proteins of ESM with immune-modulatory activities of activating antigen-presenting cells (APC). Conclusion: This study has provided a clue into the potential valorization of eggshell membranes and their peptides as an adjuvant for vaccines such as HBV. We recommend more in-depth molecular analysis to support our findings as well as foster real-life application. Supplementary Information: The online version contains supplementary material available at 10.1186/s43094-023-00481-5.

5.
BMC Immunol ; 23(1): 50, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261807

RESUMO

BACKGROUND: Datura stramonium L. (Solanaceae) is used traditionally in west Africa to treat asthma, epilepsy, rheumatoid arthritis, filariasis microbial infections and conjunctivitis. This study investigated the immunomodulatory effects of aqueous seed extract of D. stramonium L. (ASEDS) on Wistar rats. METHODS: Thirty Wistar albino rats (180-200 g) were randomized into 6 groups (n = 5). Group 1 received distilled water only. Rats in groups 2-6 were pretreated with 10 mg/kg body weight (b.w.) Cyclophosphamide orally for 27-days to induce immunosuppression. Thereafter, they received treatment orally for 28 days as follows: Group 2 (distilled water), group 3 (5 mg/kg b.w. Levamisole), groups 4-6 (60, 90 and 120 mg/kg b.w. ASEDS, respectively). HPLC was used to determine major compounds in ASEDS. The effects of ASEDS on immune cells, immunoglobulins A, G and M levels, lipoproteins, and antioxidant status of rats were evaluated. RESULTS: ASEDS indicated high content of Acutumine, Quinine, Catechin, Chlorogenic acid, Gallic acid, Quercetin, Vanillic acid, Luteolin, Formosanin C, Saponin, Cyanidin, Tannic acid, 3-Carene, Limonene and α-terpineol. Cyclophosphamide triggered significant (p < 0.05) reduction in total leucocyte count and differentials, IgA, IgG, high-density lipoproteins (HDL), catalase, superoxide dismutase, glutathione peroxidase, vitamins A, C and E levels of untreated rats. Administration of ASEDS led to significant (p < 0.05) improvement in immune cell counts, immunoglobulin synthesis, high-density lipoprotein concentration, and antioxidant status of rats in the treated groups. CONCLUSIONS: The results obtained from the study showed the immunomodulatory activity of ASEDS, thereby indicating its potential in immunostimulatory drug discovery.


Assuntos
Catequina , Datura stramonium , Saponinas , Animais , Ratos , Antioxidantes/farmacologia , Catalase , Ácido Clorogênico , Ciclofosfamida , Ácido Gálico/farmacologia , Glutationa Peroxidase , Imunoglobulina A , Imunoglobulina G , Terapia de Imunossupressão , Levamisol , Limoneno , Lipoproteínas HDL , Luteolina , Extratos Vegetais/farmacologia , Quercetina , Quinina , Ratos Wistar , Sementes , Superóxido Dismutase , Taninos , Ácido Vanílico , Vitaminas , Água
6.
Front Med (Lausanne) ; 9: 907583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783612

RESUMO

The inhibitory potential of Artemisia annua, a well-known antimalarial herb, against several viruses, including the coronavirus, is increasingly gaining recognition. The plant extract has shown significant activity against both the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the novel SARS-CoV-2 that is currently ravaging the world. It is therefore necessary to evaluate individual chemicals of the plant for inhibitory potential against SARS-CoV-2 for the purpose of designing drugs for the treatment of COVID-19. In this study, we employed computational techniques comprising molecular docking, binding free energy calculations, pharmacophore modeling, induced-fit docking, molecular dynamics simulation, and ADMET predictions to identify potential inhibitors of the SARS-CoV-2 main protease (Mpro) from 168 bioactive compounds of Artemisia annua. Rhamnocitrin, isokaempferide, kaempferol, quercimeritrin, apigenin, penduletin, isoquercitrin, astragalin, luteolin-7-glucoside, and isorhamnetin were ranked the highest, with docking scores ranging from -7.84 to -7.15 kcal/mol compared with the -6.59 kcal/mol demonstrated by the standard ligand. Rhamnocitrin, Isokaempferide, and kaempferol, like the standard ligand, interacted with important active site amino acid residues like HIS 41, CYS 145, ASN 142, and GLU 166, among others. Rhamnocitrin demonstrated good stability in the active site of the protein as there were no significant conformational changes during the simulation process. These compounds also possess acceptable druglike properties and a good safety profile. Hence, they could be considered for experimental studies and further development of drugs against COVID-19.

7.
J Ethnopharmacol ; 293: 115259, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35381308

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fagara zanthoxyloides Lam., an African traditional medicinal plant, is used for treatment of malaria and diabetes. AIM: To investigate the antidiabetic property of ethyl acetate fraction of F. zanthoxyloides root-bark (EAFFZRB) on alloxan-induced diabetic rats. MATERIALS AND METHODS: Extraction, isolation, preliminary phytochemical analysis, and acute toxicity study of ethanol extract and fractions of F. zanthoxyloides root-bark were achieved using standard methods. Phyto-constituents in EAFFZRB were identified using HPLC technique. Forty-eight male Wistar rats (140-185 g) were randomized into 6 groups (n = 8). Groups 1 and 2 served as normal and negative controls, respectively. Diabetes was induced in test groups (2-6) using 150 mg/kg body weight (b.w) Alloxan monohydrate. Rats in groups 4-6 received of 200, 400 and 600 mg/kg b.w. EAFFZRB orally, respectively, for 21 days. Group 3 rats received 5 mg/kg b.w Glibenclamide. The effect of EAFFZRB on alterations in hematological, biochemical, and histological indices of study rats were assessed. RESULTS: Extraction of 3500 g ethanol extract yielded 15.71 g EAFFZRB. HPLC fingerprint of EAFFZRB indicated presence of luteolin, rutin, quercetin, apigenin, cinnamic acid and catechin. Diabetes triggered significant (p < 0.05) alterations in b.w., hematological, biochemical and histological indices of test rats relative to normal control. Treatment with EAFFZRB (LD50 = 3807.9 mg/kg b.w.) resulted in remarkable improvements in altered b.w. changes, hematological, biochemical and histological parameters of diabetic rats. CONCLUSION: The study demonstrated the antidiabetic potential of EAFFZRB, providing scientific basis for traditional use of the plant in treatment of diabetes and its complications.


Assuntos
Diabetes Mellitus Experimental , Zanthoxylum , Acetatos , Aloxano , Animais , Glicemia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Etanol/uso terapêutico , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar
8.
PLoS One ; 16(7): e0246915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34297725

RESUMO

Although aluminum-containing adjuvants are widely used in human vaccination due to their excellent safety profile, they exhibit low effectiveness with many recombinant antigens. This study investigated the adjuvanticity of snail mucin with recombinant Hepatitis B Vaccine (rHBsAg). Twenty-five (25) female mice distributed unbiasedly into 5 groups were used in the study and were administered different rHBsAg/Mucin formulation at 7 days intervals. Blood samples were collected a day following the administration for analysis. The results of liver function and body weight analysis were indications that snail mucin had no adverse effect on the mice. The treatment group (administer mucin and rHBsAg) showed significantly (P<0.05) higher mean titres of anti-HBsAg antibodies when compared with the negative controls and the positive control administered with two doses of rHBsAg after the boost doses (day 28). Furthermore, a comparable immune response to positive control administered with three doses rHBaAG was recorded. In silico prediction, studies of the protein-protein interaction of a homology modelled snail mucus protein and HBsAg gave an indication of enhanced HBV antigen-antibody interaction. Therefore, this study has shown that snail mucin possesses some adjuvant properties and enhances immune response towards rHBsAg vaccine. However, there is a need for further molecular dynamics studies to understand its mechanism of action.


Assuntos
Vacinas contra Hepatite B/imunologia , Mucinas/imunologia , Caramujos/imunologia , Animais , Camundongos
9.
Pharm Biol ; 58(1): 1069-1076, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33164620

RESUMO

CONTEXT: Schumanniophyton magnificum Harms (Rubiaceae) is used traditionally in Nigeria for the treatment of snake bites. Snake venom contains phospholipase A2 (PLA2) which plays a key role in causing inflammation and pain. OBJECTIVE: To assess the anti-inflammatory effect of the methanol extract of Schumanniophyton magnificum (MESM) leaves through the inhibition of PLA2 and investigate the compounds responsible for the effect. MATERIALS AND METHODS: PLA2-inhibitory activity of MESM was assessed at concentrations of 0.1-0.8 mg/mL using human red blood cells as substrate. Prednisolone was used as the standard control. MESM was subsequently partitioned using n-hexane, dichloromethane, ethyl acetate and aqueous-methanol (90:10 v/v), after which PLA2-inhibitory activity of the partitions was determined. The best partition was subjected to chromatographic techniques and the fractions obtained were assessed for PLA2 inhibition at 0.4 mg/mL. Compounds in the most active fraction were determined using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS). RESULTS: MESM significantly inhibited PLA2 activity at 0.8 mg/mL (44.253%) compared to prednisolone (35.207%). n-Hexane partition (SMP1) proved more active with inhibition of 55.870% observed at 0.1 mg/mL. Fraction 1 (SMF1) showed the highest PLA2-inhibitory activity of 58.117%. FTIR studies revealed the presence of some functional groups in SMF1, and GC-MS confirmed the presence of 9 compounds which are first reported in this plant. Hexadecanoic acid, ethyl ester was identified as the major compound (24.906%). DISCUSSION AND CONCLUSIONS: The PLA2-inhibitory activity of MESM suggests that its compounds may be explored further in monitoring anti-inflammatory genes affected by the venoms.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores de Fosfolipase A2/farmacologia , Extratos Vegetais/farmacologia , Rubiaceae/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Bioensaio , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Inibidores de Fosfolipase A2/administração & dosagem , Inibidores de Fosfolipase A2/isolamento & purificação , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/metabolismo , Extratos Vegetais/administração & dosagem , Folhas de Planta , Prednisolona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...