Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659906

RESUMO

Structural variants (SVs) contribute significantly to human genetic diversity and disease 1-4 . Previously, SVs have remained incompletely resolved by population genomics, with short-read sequencing facing limitations in capturing the whole spectrum of SVs at nucleotide resolution 5-7 . Here we leveraged nanopore sequencing 8 to construct an intermediate coverage resource of 1,019 long-read genomes sampled within 26 human populations from the 1000 Genomes Project. By integrating linear and graph-based approaches for SV analysis via pangenome graph-augmentation, we uncover 167,291 sequence-resolved SVs in these samples, considerably advancing SV characterization compared to population-wide short-read sequencing studies 3,4 . Our analysis details diverse SV classes-deletions, duplications, insertions, and inversions-at population-scale. LINE-1 and SVA retrotransposition activities frequently mediate transductions 9,10 of unique sequences, with both mobile element classes transducing sequences at either the 3'- or 5'-end, depending on the source element locus. Furthermore, analyses of SV breakpoint junctions suggest a continuum of homology-mediated rearrangement processes are integral to SV formation, and highlight evidence for SV recurrence involving repeat sequences. Our open-access dataset underscores the transformative impact of long-read sequencing in advancing the characterisation of polymorphic genomic architectures, and provides a resource for guiding variant prioritisation in future long-read sequencing-based disease studies.

2.
Sci Adv ; 7(42): eabh1434, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652942

RESUMO

Muscle function requires unique structural and metabolic adaptations that can render muscle cells selectively vulnerable, with mutations in some ubiquitously expressed genes causing myopathies but sparing other tissues. We uncovered a muscle cell vulnerability by studying miR-1, a deeply conserved, muscle-specific microRNA whose ablation causes various muscle defects. Using Caenorhabditis elegans, we found that miR-1 represses multiple subunits of the ubiquitous vacuolar adenosine triphosphatase (V-ATPase) complex, which is essential for internal compartment acidification and metabolic signaling. V-ATPase subunits are predicted miR-1 targets in animals ranging from C. elegans to humans, and we experimentally validated this in Drosophila. Unexpectedly, up-regulation of V-ATPase subunits upon miR-1 deletion causes reduced V-ATPase function due to defects in complex assembly. These results reveal V-ATPase assembly as a conserved muscle cell vulnerability and support a previously unknown role for microRNAs in the regulation of protein complexes.

3.
Dev Cell ; 55(4): 483-499.e7, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33002421

RESUMO

Combinatorial action of transcription factors (TFs) with partially overlapping expression is a widespread strategy to generate novel gene-expression patterns and, thus, cellular diversity. Known mechanisms underlying combinatorial activity require co-expression of TFs within the same cell. Here, we describe the mechanism by which two TFs that are never co-expressed generate a new, intersectional expression pattern in C. elegans embryos: lineage-specific priming of a gene by a transiently expressed TF generates a unique intersection with a second TF acting on the same gene four cell divisions later; the second TF is expressed in multiple cells but only activates transcription in those where priming occurred. Early induction of active transcription is necessary and sufficient to establish a competent state, maintained by broadly expressed regulators in the absence of the initial trigger. We uncover additional cells diversified through this mechanism. Our findings define a mechanism for combinatorial TF activity with important implications for generation of cell-type diversity.


Assuntos
Caenorhabditis elegans/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem da Célula , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica , Loci Gênicos , Neurônios/metabolismo , Ligação Proteica , Fatores de Tempo , Transcrição Gênica
4.
DNA Repair (Amst) ; 74: 38-50, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30606611

RESUMO

Chromatin regulators play crucial roles in the DNA damage response. While the chromatin changes needed for double-strand break repair and nucleotide excision repair have been intensely studied, the chromatin requirements of interstrand crosslink (ICL) repair have remained largely unexplored. Here, we studied the effect of silencing the INO80 chromatin remodeler subunits on the cellular response to ICLs. Cells depleted of Ino80 ATPase were more sensitive to mitomycin C (MMC) and defective in FANCD2 chromatin recruitment. Ino80-deficient cells displayed strongly reduced Chk1 phosphorylation after MMC treatment indicating impaired ATR-dependent DNA damage signaling, likely due to the significantly slower RPA foci formation which we observed in these cells. MMC treatment of cells silenced for FANCM - a protein required for ICL-induced checkpoint signaling, Ino80 or both genes simultaneously led to similar decreases in RPA phosphorylation suggesting that the two proteins were involved in the same checkpoint pathway. Co-immunoprecipitation data indicated that Ino80 and FANCM interact physically. Taken together our data demonstrate for the first time that the INO80 chromatin remodeler cooperates with FANCM to mediate ICL-induced checkpoint activation by promoting accumulation of RPA at the lesion sites. This constitutes a novel mechanism by which the INO80 chromatin remodeler participates in the repair of ICLs and genome integrity maintenance.


Assuntos
Pontos de Checagem do Ciclo Celular , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Reparo do DNA , DNA/genética , ATPases Associadas a Diversas Atividades Celulares , DNA/química , Dano ao DNA , DNA Helicases/deficiência , DNA Helicases/genética , Proteínas de Ligação a DNA , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas dos Microfilamentos/deficiência , Células PC-3 , Ligação Proteica , Proteína de Replicação A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...