Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Cell Biol ; 35(8): 1316-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645926

RESUMO

Deletion of the LIMK1 gene is associated with Williams syndrome, a unique neurodevelopmental disorder characterized by severe defects in visuospatial cognition and long-term memory (LTM). However, whether LIMK1 contributes to these deficits remains elusive. Here, we show that LIMK1-knockout (LIMK1(-/-)) mice are drastically impaired in LTM but not short-term memory (STM). In addition, LIMK1(-/-) mice are selectively defective in late-phase long-term potentiation (L-LTP), a form of long-lasting synaptic plasticity specifically required for the formation of LTM. Furthermore, we show that LIMK1 interacts and regulates the activity of cyclic AMP response element-binding protein (CREB), an extensively studied transcriptional factor critical for LTM. Importantly, both L-LTP and LTM deficits in LIMK1(-/-) mice are rescued by increasing the activity of CREB. These results provide strong evidence that LIMK1 deletion is sufficient to lead to an LTM deficit and that this deficit is attributable to CREB hypofunction. Our study has identified a direct gene-phenotype link in mice and provides a potential strategy to restore LTM in patients with Williams syndrome through the enhancement of CREB activity in the adult brain.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Quinases Lim/metabolismo , Memória de Longo Prazo , Plasticidade Neuronal , Fatores de Despolimerização de Actina/metabolismo , Animais , Células Cultivadas , Deleção de Genes , Células HEK293 , Humanos , Quinases Lim/genética , Potenciação de Longa Duração , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Memória de Curto Prazo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mapas de Interação de Proteínas , Síndrome de Williams/genética , Síndrome de Williams/metabolismo
3.
Channels (Austin) ; 7(1): 6-16, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23247582

RESUMO

Ischemic stroke is one of the leading causes of disability and death in the world. Elucidation of the underlying mechanisms associated with neuronal death during this detrimental process has been of significant interest in the field of research. One principle component vital to the maintenance of cellular integrity is the cytoskeleton. Studies suggest that abnormalities at the level of this fundamental structure are directly linked to adverse effects on cellular well-being, including cell death. In recent years, evidence has also emerged regarding an imperative role for the transient receptor potential (TRP) family member TRPM7 in the mediation of excitotoxic-independent neuronal demise. In this review, we will elaborate on the current knowledge and unique properties associated with the functioning of this structure. In addition, we will deliberate the involvement of distinct mechanistic pathways during TRPM7-dependent cell death, including modifications at the level of the cytoskeleton.


Assuntos
Citoesqueleto/metabolismo , Neurônios/citologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Canais de Cátion TRPM/metabolismo , Animais , Morte Celular , Humanos , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Acidente Vascular Cerebral/genética , Canais de Cátion TRPM/genética
4.
Cell Signal ; 25(2): 397-402, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23153583

RESUMO

Long-lasting synaptic plasticity involves changes in both synaptic morphology and electrical signaling (here referred to as structural and functional plasticity). Recent studies have revealed a myriad of molecules and signaling processes that are critical for each of these two forms of plasticity, but whether and how they are mechanistically linked to achieve coordinated changes remain controversial. It is well accepted that functional plasticity at the excitatory synapse is dependent upon the activities of glutamate receptors. While the activation of NMDARs (N-methyl-D-aspartic acid receptors) and/or mGluRs (metabotropic glutamate receptors) is required for the induction of many forms of plasticity, AMPARs (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors), the principal mediators of fast excitatory synaptic transmission, are the ultimate targets of modifications that express functional plasticity. Investigations exploring structural plasticity have been mainly focused on the small membranous protrusions on the dendrites called spines. The morphological regulation of these spines is mediated by the reorganization of the actin cytoskeleton, the predominant structural component of the synapse. In this regard, the Rho family of GTPases, particularly Rac1, RhoA and Cdc42, is found to be the central regulator of spine actin and structural plasticity of the synapse. It is thought that the collaborative interaction between functional and structural factors underlies the sustained or permanent nature of long-lasting synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), the most extensively studied forms of synaptic plasticity widely regarded as cellular mechanisms for learning and memory. However, data specifically pertaining to whether and how these two distinct components are linked at the molecular level remain sparse. In this regard, we have identified a number of synaptic proteins that are involved in both structural and functional changes during mGluR-dependent LTD (mGluR-LTD). Among these are the GluA2 (formerly called GluR2) subunit of AMPARs, Rac1 and Rac1-activated kinases. We have discovered that these proteins interact and reciprocally regulate each other, which led us to hypothesize that the GluA2-Rac1 interaction may serve as a coordinator between functional and morphological plasticity. In this review, we will briefly discuss the available evidence to support such a hypothesis.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Cofilina 1/metabolismo , Humanos , Depressão Sináptica de Longo Prazo , Transdução de Sinais , Transmissão Sináptica , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
Mol Brain ; 4: 39, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22018352

RESUMO

BACKGROUND: DIP (diaphanous interacting protein)/WISH (WASP interacting SH3 protein) is a protein involved in cytoskeletal signaling which regulates actin cytoskeleton dynamics and/or microtubules mainly through the activity of Rho-related proteins. Although it is well established that: 1) spine-head volumes change dynamically and reflect the strength of the synapse accompanying long-term functional plasticity of glutamatergic synaptic transmission and 2) actin organization is critically involved in spine formation, the involvement of DIP/WISH in these processes is unknown. RESULTS: We found that DIP/WISH-deficient hippocampal CA1 neurons exhibit enhanced long-term potentiation via modulation of both pre- and post-synaptic events. Consistent with these electrophysiological findings, DIP/WISH-deficient mice, particularly at a relatively young age, found the escape hole more rapidly in the Barnes maze test. CONCLUSIONS: We conclude that DIP/WISH deletion improves performance in the Barnes maze test in mice probably through increased hippocampal long-term potentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Aprendizagem em Labirinto , Proteínas Musculares/deficiência , Sinapses/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Vias Auditivas/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Neurônios/metabolismo
6.
Mol Cell Biol ; 31(3): 388-403, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21115725

RESUMO

The molecular mechanisms that coordinate postnatal brain enlargement, synaptic properties, and cognition remain an enigma. Here, we demonstrate that neuronal complexity controlled by p21-activated kinases (PAKs) is a key determinant for postnatal brain enlargement and synaptic properties. We showed that double-knockout (DK) mice lacking both PAK1 and PAK3 were born healthy, with normal brain size and structure, but severely impaired in postnatal brain growth, resulting in a dramatic reduction in brain volume. Remarkably, the reduced brain size was accompanied by minimal changes in total cell count, due to a significant increase in cell density. However, the DK neurons have smaller soma, markedly simplified dendritic arbors/axons, and reduced synapse density. Surprisingly, the DK mice had elevated basal synaptic responses due to enhanced individual synaptic potency but were severely impaired in bidirectional synaptic plasticity. The actions of PAK1 and PAK3 are possibly mediated by cofilin-dependent actin regulation, because the activity of cofilin and the properties of actin filaments were altered in the DK mice. These results reveal an essential in vivo role of PAK1 and PAK3 in coordinating neuronal complexity and synaptic properties and highlight the critical importance of dendrite/axon growth in dictating postnatal brain growth and attainment of normal brain size and function.


Assuntos
Encéfalo/enzimologia , Encéfalo/patologia , Neurônios/patologia , Sinapses/patologia , Quinases Ativadas por p21/deficiência , Quinases Ativadas por p21/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Ansiedade/complicações , Ansiedade/enzimologia , Ansiedade/fisiopatologia , Axônios/enzimologia , Axônios/patologia , Comportamento Animal , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Contagem de Células , Espinhas Dendríticas/enzimologia , Espinhas Dendríticas/patologia , Hipercinese/complicações , Hipercinese/enzimologia , Hipercinese/fisiopatologia , Memória/fisiologia , Camundongos , Neuroglia/enzimologia , Neuroglia/patologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/enzimologia , Tamanho do Órgão , Sinapses/enzimologia , Transmissão Sináptica/fisiologia , Quinases Ativadas por p21/genética
7.
Brain Res ; 1366: 162-71, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20932954

RESUMO

As the genomic basis for Down syndrome (DS), human trisomy 21 is the most common genetic cause of intellectual disability in children and young people. The genomic regions on human chromosome 21 (Hsa21) are syntenic to three regions in the mouse genome, located on mouse chromosome 10 (Mmu10), Mmu16, and Mmu17. Recently, we have developed three new mouse models using chromosome engineering carrying the genotypes of Dp(10)1Yey/+, Dp(16)1Yey/+, or Dp(17)1Yey/+, which harbor a duplication spanning the entire Hsa21 syntenic region on Mmu10, Mmu16, or Mmu17, respectively. In this study, we analyzed the hippocampal long-term potentiation (LTP) and cognitive behaviors of these models. Our results show that, while the genotype of Dp(17)1Yey/+ results in abnormal hippocampal LTP, the genotype of Dp(16)1Yey/+ leads to both abnormal hippocampal LTP and impaired learning/memory. Therefore, these mutant mice can serve as powerful tools for further understanding the mechanism underlying cognitively relevant phenotypes associated with DS, particularly the impacts of different syntenic regions on these phenotypes.


Assuntos
Cromossomos Humanos Par 21/genética , Transtornos Cognitivos/etiologia , Síndrome de Down/complicações , Síndrome de Down/patologia , Hipocampo/fisiopatologia , Potenciação de Longa Duração/genética , Trissomia/genética , Análise de Variância , Animais , Comportamento Animal , Condicionamento Clássico/fisiologia , Modelos Animais de Doenças , Síndrome de Down/genética , Estimulação Elétrica/métodos , Eletrochoque/efeitos adversos , Medo/fisiologia , Humanos , Técnicas In Vitro , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp
8.
Hum Mol Genet ; 19(14): 2780-91, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20442137

RESUMO

Down syndrome (DS) is caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is the most common genetic cause for developmental cognitive disability. The regions on Hsa21 are syntenically conserved with three regions located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. In this report, we describe a new mouse model for DS that carries duplications spanning the entire Hsa21 syntenic regions on all three mouse chromosomes. This mouse mutant exhibits DS-related neurological defects, including impaired cognitive behaviors, reduced hippocampal long-term potentiation and hydrocephalus. These results suggest that when all the mouse orthologs of the Hsa21 genes are triplicated, an abnormal cognitively relevant phenotype is the final outcome of the elevated expressions of these orthologs as well as all the possible functional interactions among themselves and/or with other mouse genes. Because of its desirable genotype and phenotype, this mutant may have the potential to serve as one of the reference models for further understanding the developmental cognitive disability associated with DS and may also be used for developing novel therapeutic interventions for this clinical manifestation of the disorder.


Assuntos
Cromossomos Humanos Par 21/genética , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/patologia , Camundongos Transgênicos , Animais , Células Cultivadas , Síndrome de Down/fisiopatologia , Feminino , Força da Mão/fisiologia , Hipocampo/fisiopatologia , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Condicionamento Físico Animal , Gravidez , Sintenia/genética
9.
PLoS One ; 4(2): e4339, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19190753

RESUMO

Ca(2+) influx via GluR2-lacking Ca(2+)-permeable AMPA glutamate receptors (CP-AMPARs) can trigger changes in synaptic efficacy in both interneurons and principle neurons, but the underlying mechanisms remain unknown. We took advantage of genetically altered mice with no or reduced GluR2, thus allowing the expression of synaptic CP-AMPARs, to investigate the molecular signaling process during CP-AMPAR-induced synaptic plasticity at CA1 synapses in the hippocampus. Utilizing electrophysiological techniques, we demonstrated that these receptors were capable of inducing numerous forms of long-term potentiation (referred to as CP-AMPAR dependent LTP) through a number of different induction protocols, including high-frequency stimulation (HFS) and theta-burst stimulation (TBS). This included a previously undemonstrated form of protein-synthesis dependent late-LTP (L-LTP) at CA1 synapses that is NMDA-receptor independent. This form of plasticity was completely blocked by the selective CP-AMPAR inhibitor IEM-1460, and found to be dependent on postsynaptic Ca(2+) ions through calcium chelator (BAPTA) studies. Surprisingly, Ca/CaM-dependent kinase II (CaMKII), the key protein kinase that is indispensable for NMDA-receptor dependent LTP at CA1 synapses appeared to be not required for the induction of CP-AMPAR dependent LTP due to the lack of effect of two separate pharmacological inhibitors (KN-62 and staurosporine) on this form of potentiation. Both KN-62 and staurosporine strongly inhibited NMDA-receptor dependent LTP in control studies. In contrast, inhibitors for PI3-kinase (LY294002 and wortmannin) or the MAPK cascade (PD98059 and U0126) significantly attenuated this CP-AMPAR-dependent LTP. Similarly, postsynaptic infusion of tetanus toxin (TeTx) light chain, an inhibitor of exocytosis, also had a significant inhibitory effect on this form of LTP. These results suggest that distinct synaptic signaling underlies GluR2-lacking CP-AMPAR-dependent LTP, and reinforces the recent notions that CP-AMPARs are important facilitators of synaptic plasticity in the brain.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Potenciação de Longa Duração , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de AMPA/metabolismo , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Hipocampo/enzimologia , Íons , Potenciação de Longa Duração/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Knockout , Permeabilidade/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/enzimologia
10.
Neuropharmacology ; 56(1): 73-80, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18644395

RESUMO

The Rho family small GTPases are critically involved in the regulation of spine and synaptic properties, but the underlying mechanisms are poorly defined. We took genetic approaches to create and analyze knockout mice deficient in the expression of the protein kinase PAK1 that is directly associated with and activated by the Rho GTPases. We demonstrated that while these knockout mice were normal in both basal and presynaptic function, they were selectively impaired in long-term potentiation (LTP) at hippocampal CA1 synapses. Consistent with the electrophysiological deficits, the PAK1 knockout mice showed changes in the actin cytoskeleton and the actin binding protein cofilin. These results indicate that PAK1 is critical in hippocampal synaptic plasticity via regulating cofilin activity and the actin cytoskeleton.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Quinases Ativadas por p21/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Biofísica , Células Cultivadas , Espinhas Dendríticas/ultraestrutura , Estimulação Elétrica/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Camundongos , Camundongos Knockout , N-Metilaspartato/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Quinoxalinas/farmacologia , Sinapses/genética , Sinapses/ultraestrutura , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Quinases Ativadas por p21/deficiência
11.
Neuropharmacology ; 56(1): 81-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18718479

RESUMO

The actin cytoskeleton is critically involved in the regulation of the dendritic spine and synaptic properties, but the molecular mechanisms underlying actin dynamics in neurons are poorly defined. We took genetic approaches to create and analyze knockout mice specifically lacking ROCK2, a protein kinase that directly interacts with and is activated by the Rho GTPases, the central mediator of actin reorganization. We demonstrated that while these knockout mice were normal in gross brain anatomy, they were impaired in both basal synaptic transmission and hippocampal long-term potentiation (LTP). Consistent with the electrophysiological deficits, the ROCK2 knockout neurons showed deficits in spine properties, synapse density, the actin cytoskeleton, and the actin-binding protein cofilin. These results indicate that ROCK2/cofilin signaling is critical in the regulation of neuronal actin, spine morphology and synaptic function.


Assuntos
Espinhas Dendríticas/fisiologia , Neurônios/ultraestrutura , Sinapses/fisiologia , Quinases Associadas a rho/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Animais Recém-Nascidos , Biofísica , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glicina/farmacologia , Glicinérgicos/farmacologia , Hipocampo/citologia , Técnicas In Vitro , Potenciação de Longa Duração/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão/métodos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Faloidina/metabolismo , Sinapses/ultraestrutura , Sinapsinas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Quinases Associadas a rho/deficiência
12.
Neuropharmacology ; 47(5): 746-54, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15458846

RESUMO

To investigate the role of the LIM-kinase (LIMK) family in the regulation of ADF/cofilin phosphorylation and synaptic function in the mammalian central nervous system (CNS), we conducted biochemical and electrophysiological analysis using mice that were genetically altered in the expression of LIMK-1 and LIMK-2. We showed here that while LIMK-2 knockout mice exhibited minimal abnormalities, the LIMK-1/2 double knockout mice were more severely impaired in both ADF/cofilin phosphorylation and excitatory synaptic function in the CA1 region of the hippocampus. These results indicate a critical role for the LIMK family in the regulation of ADF/cofilin and synaptic function in the brain.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/fisiologia , Fatores de Despolimerização de Actina , Animais , Cerebelo/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Destrina , Hipocampo/fisiologia , Cinética , Quinases Lim , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...