Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 212: 64-72, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37699276

RESUMO

During the transition period and early lactation of ruminants with higher production, the reproductive organs are exposed to various stressors, like inflammation stimulators such as lipopolysaccharides (LPS), as a consequence of high concentrate consumption. In this study, we aimed to determine the probable potential of α-linolenic acid (ALA) in alleviating LPS-induced effects in ovine oocytes in vitro as well as the underlying controlling mechanisms. Different concentrations of LPS (0, 0.01, 0.1, 1, and 10 µg/mL) were added to the oocyte maturation medium to evaluate its effect on oocyte developmental competence. Likewise, different concentrations of ALA (0, 10, 50, 100, and 200 µM/mL) were added to the maturation medium to define its effects on oocyte developmental competence. Accordingly, a combination of ALA and LPS in a dose-dependent manner was added to the maturation medium to elucidate their effect on oocyte developmental competence and uncover any possible potential of ALA to alleviate the detrimental effect induced by the presence of LPS. The expressions of candidate genes were measured in mature oocytes treated either with ALA, LPS, or ALA plus LPS. Adding LPS to the maturation medium decreased the cleavage rate of the treated oocytes, and those oocytes reached the blastocyst stage at a lower rate. Adding ALA to the maturation medium in the presence of LPS alleviated the detrimental effects of LPS in a dose-dependent manner, which ultimately led to higher cleavage and blastocyst formation. A higher expression of Trim26, GRHPR, NDUFA, PGC-1α, SOD, CS, SDH, p53, and CAT was observed in LPS-treated oocytes compared with the ALA and control groups. Additionally, CS and CAT transcripts were down-regulated in oocytes in LPS plus ALA-treated group compared to that of the LPS-treated group. These findings revealed that ALA has the potential to alleviate the detrimental effects induced by LPS on in ovine oocytes during maturation in vitro. Thus, LPS-detrimental effect and ALA-preventing mechanisms seem to be regulated through the expression of genes involved in mitochondrial biogenesis and function, oxidative stress, and antioxidant systems.

2.
Vet Res Forum ; 12(2): 211-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345388

RESUMO

This study was conducted to compare the efficacy of different feed additives as mycotoxin binders in vitro. Four prevalent aflatoxin-sequestering agents (SAs) including two bentonite clays (common and acid activated bentonite), a yeast cell wall product and an activated charcoal product were evaluated in vitro to verify their capacity for binding aflatoxin B1 (AFB1). The SAs were individually mixed at two different ratios with AFB1 (1:70,000, 1:120,000) and their binding capacity indices were determined. Experimental bentonites showed high adsorption abilities, binding more than 70.00% of the available AFB1. At the 1:70,000 and 1:120,000 aflatoxin binder (AF:B) ratios, acid activated bentonite were sequestered over 87.00 and 99.00% of the AFB1, respectively. Yeast cell wall showed moderate adsorption ability at the 1:120,000 AF:B ratio, adsorbing 47.00 of AFB1. The adsorption ability of activated carbon at two AF:B ratio and yeast cell wall at 1:70,000 AF:B ratio were significantly lower than other binders. The ratio of chemisorption and binding equivalency factor were higher for acid activated bentonite compared to other sequestering agents. Based on the result of this study, it seems that acid activated bentonite could be considered efficient at sequestering the available AFB1, resulting as promising agents for use in animals diet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...