Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 272(Pt 2): 132690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825270

RESUMO

A rising quantity of drugs has been discharged into the aquatic environment, posing a substantial hazard to public health. In the current work, a novel hydrogel (i.Carr@Bent@PTC), comprised of iota-carrageenan, bentonite, and 4-phenyl-3-thiosemicarbazide, was successfully prepared. The introduction of 4-phenyl-3-thiosemicarbazide and bentonite in iota-carrageenan significantly increased the mechanical strength of iota-carrageenan hydrogel and improved its degree of swelling, which can be attributed to the hydrophilic properties of PTC and Bent. The recorded contact angle was 70.8°, 59.1°, 53.9°, and 34.6° for pristine i.Carr, i.Carr@Bent, and i.Carr@Bent@PTC, respectively. The low contact angle measurement of the Bent and PTC loaded-i.Carr hydrogel was attributed to the hydrophilic Bent and PTC. The ternary i.Carr@Bent@PTC hydrogel demonstrated broad pH adaptability and excellent adsorption capacities for sulfamethoxazole (SMX) and losartan potassium (LP), i.e., 467.61 mg. g-1 and 274.43 mg. g-1 at 298.15 K, respectively. The pseudo-first-order (PSO) model provided a better fit for the adsorption kinetics. The adsorption of SMX and LP can be better explained by employing the Sips and Langmuir isotherm models. As revealed by XPS and FTIR investigations, π-π stacking, complexation, electrostatic interaction, and hydrogen bonding were primarily involved in the adsorption mechanisms.


Assuntos
Bentonita , Carragenina , Hidrogéis , Losartan , Semicarbazidas , Sulfametoxazol , Poluentes Químicos da Água , Carragenina/química , Adsorção , Semicarbazidas/química , Losartan/química , Hidrogéis/química , Bentonita/química , Poluentes Químicos da Água/química , Sulfametoxazol/química , Concentração de Íons de Hidrogênio , Cinética , Purificação da Água/métodos , Interações Hidrofóbicas e Hidrofílicas
2.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38399383

RESUMO

The doping of engineered nanomaterials (ENMs) is a key tool for manipulating the properties of ENMs (e.g., electromagnetic, optical, etc.) for different therapeutic applications. However, adverse health outcomes and the cellular biointeraction of doped ENMs, compared to undoped counterparts, are not fully understood. Previously, we have shown that doping manganese oxide nanoparticles with ZnO (ZnO-MnO2 NPs) improved their catalytic properties. In this study, we assessed the toxicity of ZnO-MnO2 NPs in Raw 264.7 cells. NPs were prepared via an eco-friendly, co-precipitation method and characterized by several techniques, including transmission and scanning electron microscopy, X-ray diffraction, and Fourier transform infrared. The physicochemical properties of ZnO-MnO2 NPs, including size, morphology, and crystalline structure, were almost identical to MnO2 NPs. However, ZnO-MnO2 NPs showed slightly larger particle aggregates and negative charge in cell culture media. Exposure to ZnO-MnO2 NPs resulted in lower toxicity based on the cell viability and functional assay (phagocytosis) data. Exposure to both NPs resulted in the activation of the cell inflammatory response and the generation of reactive oxygen species (ROS). Despite this, exposure to ZnO-MnO2 NPs was associated with a lower toxicity profile, and it resulted in a higher ROS burst and the activation of the cell antioxidant system, hence indicating that MnO2 NP-induced toxicity is potentially mediated via other ROS-independent pathways. Furthermore, the cellular internalization of ZnO-MnO2 NPs was lower compared to MnO2 NPs, and this could explain the lower extent of toxicity of ZnO-MnO2 NPs and suggests Zn-driven ROS generation. Together, the findings of this report suggest that ZnO (1%) doping impacts cellular biointeraction and the consequent toxicological outcomes of MnO2 NPs in Raw 264.7 cells.

3.
ACS Omega ; 9(2): 2770-2782, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250433

RESUMO

Herein, we report a solvent-less, straightforward, and facile mechanochemical technique to synthesize nanocomposites of Ag2O nanoparticles-doped MnO2, which is further codoped with nitrogen-doped graphene (N-DG) [i.e., (X %)N-DG/MnO2-(1% Ag2O)] using physical milling of separately prepared N-DG and Ag2O NPs-MnO2 annealed at 400 °C over an eco-friendly ball-mill process. To assess the efficiency in terms of catalytic performance of the nanocomposites, selective oxidation of benzyl alcohol (BlOH) to benzaldehyde (BlCHO) is selected as a substrate model with an eco-friendly oxidizing agent (O2 molecule) and without any requirements for the addition of any harmful additives or bases. Various nanocomposites were prepared by varying the amount of N-DG in the composite, and the results obtained highlighted the function of N-DG in the catalyst system when they are compared with the catalyst MnO2-(1% Ag2O) [i.e., undoped catalyst] and MnO2-(1% Ag2O) codoped with different graphene dopants such as GRO and H-RG for alcohol oxidation transformation. The effects of various catalytic factors are systematically evaluated to optimize reaction conditions. The N-DG/MnO2-(1% Ag2O) catalyst exhibits premium specific activity (16.0 mmol/h/g) with 100% BlOH conversion and <99.9% BlCHO selectivity within a very short interval. The mechanochemically prepared N-DG-based nanocomposite displayed higher catalytic efficacy than that of the MnO2-(1% Ag2O) catalyst without the graphene dopant, which is N-DG in this study. A wide array of aromatic, heterocyclic, allylic, primary, secondary, and aliphatic alcohols have been selectively converted to respective ketones and aldehydes with full convertibility without further oxidation to acids over N-DG/MnO2-(1% Ag2O). Interestingly, it is also found that the N-DG/MnO2-(1% Ag2O) can be efficiently reused up to six times without a noteworthy decline in its effectiveness. The prepared nanocomposites were characterized using various analytical, microscopic, and spectroscopic techniques such as X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman, field emission scanning electron microscopy, and Brunauer-Emmett-Teller.

4.
ACS Omega ; 7(6): 4812-4820, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187301

RESUMO

Eco-friendly approaches for the preparation of nanomaterials have recently attracted considerable attention of scientific community due to rising environmental distresses. The aim of the current study is to prepare titanium dioxide (TiO2) nanoparticles (NPs) using an eco-friendly approach and investigate their performance for the photocatalytic degradation of hazardous organic dyes. For this, TiO2 NPs were prepared by using the aqueous extract of the Pulicaria undulata (L.) plant in a single step at room temperature. Energy-dispersive X-ray spectroscopy established the presence of both titanium and oxygen in the sample. X-ray diffraction revealed the formation of crystalline, anatase-phase TiO2 NPs. On the other hand, transmission election microscopy confirmed the formation of spherical shaped NPs. The presence of residual phytomolecules as capping/stabilization agents is confirmed by UV-vis analysis and Fourier-transform Infrared spectroscopy. Indeed, in the presence of P. undulata, the anatase phase of TiO2 is stabilized at a significantly lower temperature (100 °C) without using any external stabilizing agent. The green synthesized TiO2 NPs were used to investigate their potential for the photocatalytic degradation of hazardous organic dyes including methylene blue and methyl orange under UV-visible light irradiation. Due to the small size and high dispersion of NPs, almost complete degradation (∼95%) was achieved in a short period of time (between 1 and 2 h). No significant difference in the photocatalytic activity of the TiO2 NPs was observed even after repeated use (three times) of the photocatalyst. Overall, the green synthesized TiO2 NPs exhibited considerable potential for fast and eco-friendly removal of harmful organic dyes.

5.
Chem Rec ; 22(7): e202100274, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35103379

RESUMO

Graphene-based nanocomposites with inorganic (metal and metal oxide) nanoparticles leads to materials with high catalytic activity for a variety of chemical transformations. Graphene and its derivatives such as graphene oxide, highly reduced graphene oxide, or nitrogen-doped graphene are excellent support materials due to their high surface area, their extended π-system, and variable functionalities for effective chemical interactions to fabricate nanocomposites. The ability to fine-tune the surface composition for desired functionalities enhances the versatility of graphene-based nanocomposites in catalysis. This review summarizes the preparation of graphene/inorganic NPs based nanocomposites and their use in catalytic applications. We discuss the large-scale synthesis of graphene-based nanomaterials. We have also highlighted the interfacial electronic communication between graphene/inorganic nanoparticles and other factors resulting in increased catalytic efficiencies.

6.
Molecules ; 26(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920456

RESUMO

A simple and efficient BF3-OEt2 promoted C3-alkylation of indole has been developed to obtain3-indolylsuccinimidesfrom commercially available indoles and maleimides, with excellent yields under mild reaction conditions. Furthermore, anti-proliferative activity of these conjugates was evaluated against HT-29 (Colorectal), Hepg2 (Liver) and A549 (Lung) human cancer cell lines. One of the compounds, 3w, having N,N-Dimethylatedindolylsuccinimide is a potent congener amongst the series with IC50 value 0.02 µM and 0.8 µM against HT-29 and Hepg2 cell lines, respectively, and compound 3i was most active amongst the series with IC50 value 1.5 µM against A549 cells. Molecular docking study and mechanism of reaction have briefly beendiscussed. This method is better than previous reports in view of yield and substrate scope including electron deficient indoles.


Assuntos
Antineoplásicos/síntese química , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Indóis/síntese química , Maleimidas/síntese química , Succinimidas/síntese química , Células A549 , Alquilação , Antineoplásicos/farmacologia , Sítios de Ligação , Catálise , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Células HT29 , Células Hep G2 , Humanos , Indóis/farmacologia , Cinética , Maleimidas/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato , Succinimidas/farmacologia
7.
Sci Rep ; 10(1): 15012, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929130

RESUMO

A series of La1-xCexCoO3 perovskite nanoparticles with rhombohedral phases was synthesized via sol-gel chemical process. X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Electron Diffraction Spectroscopy (EDS), Thermogravimetric Analysis (TGA), UV-Vis spectroscopy, Fourier Transform Infrared spectra (FTIR), Nitrogen Adsorption/desorption Isotherm, Temperature Program Reduction/Oxidation (TPR/TPO), X-ray Photoelectron Spectroscopy (XPS) techniques were utilized to examine the phase purity and chemical composition of the materials. An appropriate doping quantity of Ce ion in the LaCoO3 matrix have reduced the bond angle, thus distorting the geometrical structure and creating oxygen vacancies, which thus provides fast electron transportation. The reducibility character and surface adsorbed oxygen vacancies of the perovskites were further improved, as revealed by H2-TPR, O2-TPD and XPS studies. Furthermore, the oxidation of benzyl alcohol was investigated using the prepared perovskites to examine the effect of ceria doping on the catalytic performance of the material. The reaction was carried out with ultra-pure molecular oxygen as oxidant at atmospheric pressure in liquid medium and the kinetics of the reaction was investigated, with a focus on the conversion and selectivity towards benzaldehyde. Under optimum reaction conditions, the 5% Ce doped LaCoO3 catalyst exhibited enhanced catalytic activity (i.e., > 35%) and selectivity of > 99%, as compared to the other prepared catalysts. Remarkably, the activity of catalyst has been found to be stable after four recycles.

8.
Molecules ; 25(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295143

RESUMO

A facile, one-pot, and proficient method was developed for the production of various 2-arylaminobenzimidazoles. This methodology is based for the first time on a copper catalyst promoted domino C-N cross-coupling reaction for the generation of 2-arylaminobenzimidazoles. Mechanistic investigations revealed that the synthetic pathway involves a copper-based desulphurization/nucleophilic substitution and a subsequent domino intra and intermolecular C-N cross-coupling reactions. Some of the issues typically encountered during the synthesis of 2-arylaminobezimidazoles, including the use of expensive catalytic systems and the low reactivity of bromo precursors, were addressed using this newly developed copper-catalyzed method. The reaction procedure is simple, generally with excellent substrate tolerance, and provides good to high yields of the desired products.


Assuntos
Benzimidazóis/síntese química , Técnicas de Química Sintética , Cobre/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Catálise , Estrutura Molecular
9.
Sci Rep ; 9(1): 7747, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123284

RESUMO

Ce-doped LaMnO3 perovskite ceramics (La1-xCexMnO3) were synthesized by sol-gel based co-precipitation method and tested for the oxidation of benzyl alcohol using molecular oxygen. Benzyl alcohol conversion of ca. 25-42% was achieved with benzaldehyde as the main product. X-ray diffraction (XRD), thermogravimetric analysis (TGA), BET surface area, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (H2-TPR), temperature-programmed oxidation (O2-TPO), FT-IR and UV-vis spectroscopic techniques were used to examine the physiochemical properties. XRD analysis demonstrates the single phase crystalline high purity of the perovskite. The Ce-doped LaMnO3 perovskite demonstrated reducibility at low-temperature and higher mobility of surface O2-ion than their respective un-doped perovskite. The substitution of Ce3+ ion into the perovskite matrix improve the surface redox properties, which strongly influenced the catalytic activity of the material. The LaMnO3 perovskite exhibited considerable activity to benzyl alcohol oxidation but suffered a slow deactivation with time-on-stream. Nevertheless, the insertion of the A site metal cation with a trivalent Ce3+ metal cation led to an enhanced in catalytic performance because of atomic-scale interactions between the A and B active site. La0.95Ce0.05MnO3 catalyst demonstrated the excellent catalytic activity with a selectivity of 99% at 120 °C.

10.
ChemistryOpen ; 6(1): 112-120, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28168156

RESUMO

We report on the synthesis of the zirconia-manganese carbonate ZrOx(x %)-MnCO3 catalyst (where x=1-7) that, upon calcination at 500 °C, is converted to zirconia-manganese oxide ZrOx(x %)-Mn2O3 . We also present a comparative study of the catalytic performance of the both catalysts for the oxidation of benzylic alcohol to corresponding aldehydes by using molecular oxygen as the oxidizing agent. ZrOx(x %)-MnCO3 was prepared through co-precipitation by varying the amounts of Zr(NO3)4 (w/w %) in Mn(NO3)2. The morphology, composition, and crystallinity of the as-synthesized product and the catalysts prepared upon calcination were studied by using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. The surface areas of the catalysts [133.58 m2 g-1 for ZrOx(1 %)-MnCO3 and 17.48 m2 g-1 for ZrOx(1 %)-Mn2O3 ] were determined by using the Brunauer-Emmett-Teller method, and the thermal stability was assessed by using thermal gravimetric analysis. The catalyst with composition ZrOx(1 %)-MnCO3 pre-calcined at 300 °C exhibited excellent specific activity (48.00 mmolg-1 h-1) with complete conversion within approximately 5 min and catalyst cyclability up to six times without any significant loss in activity. The specific activity, turnover number and turnover frequency achieved is the highest so far (to the best of our knowledge) compared to the previously reported catalysts used for the oxidation of benzyl alcohol. The catalyst showed selectivity for aromatic alcohols over aliphatic alcohols.

11.
Molecules ; 22(1)2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28106856

RESUMO

The synthesis of Palladium (Pd) nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs) using an aqueous extract of aerial parts of Origanum vulgare L. (OV) as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs) were analyzed using ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and thermal gravimetric analysis (TGA). Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.


Assuntos
Química Verde/métodos , Nanopartículas Metálicas/química , Origanum/química , Paládio/química , Extratos Vegetais/química , Álcoois/química , Catálise , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxirredução
12.
Dalton Trans ; 44(21): 9709-17, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25633046

RESUMO

The immense importance of nanoparticles and their applications is a strong motivation for exploring new synthetic techniques. However, due to strict regulations that manage the potential environmental impacts greener alternatives for conventional synthesis are the focus of intense research. In the scope of this perspective, a concise discussion about the use of green reducing and stabilizing agents toward the preparation of metal nanoparticles is presented. Reports on the synthesis of noble metal nanoparticles using plant extracts, ascorbic acid and sodium citrate as green reagents are summarized and discussed, pointing toward an urgent need of understanding the mechanistic aspects of the involved reactions.


Assuntos
Química Verde , Nanopartículas Metálicas/química , Ácido Ascórbico/química , Citratos/química , Metais Pesados/química , Extratos Vegetais/química , Citrato de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...