Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian Pac J Cancer Prev ; 20(12): 3679-3687, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870109

RESUMO

BACKGROUND: Radioresistance remains a challenge for cancer radiotherapy. The present study aims to investigate the role of TMPRSS4 in triple negative breast cancer (TNBC) cell radiosensitivity. MATERIALS AND METHODS: After transfection of MDA-MD-468 triple negative breast cancer cells line by using the lentivirus vector, the effect of TMPRSS4 down-regulation on TNBC radiosensitivity was evaluated by using cloning assay and CCK-8 assay. The CCK-8 assay was also used for performing cell proliferation analysis. Western blot was carried out to detect the expression of certain proteins related to cell cycle pathways (cyclin D1), cell apoptosis pathways (Bax, Bcl2, and Caspase3), DNA damage and DNA damage repair (TRF2, Ku80 , Ë H2AX) . The cell cycle and cell apoptosis were also investigated using flow cytometer analysis. RESULTS: TMPRSS4 expression was down-regulated in MDA-MB-468 cells which enhanced MDA-MB-468 cells radiosensitivity. TMPRSS4 silencing also improved IR induced cell proliferation ability reduction and promoted cell arrested at G2/M phase mediated by 6 Gy IR associated with cyclin D1 expression inhibition. Moreover, TMPRSS4 inhibition enhanced TNBC apoptosis induced by 6 Gy IR following by over-expression of (Bax, Caspase3) and down-regulation of Bcl2 as the pro-apoptotic and anti-apoptotic proteins, respectively. Otherwise, TMPRSS4 down-regulation increases  DNA damage induced by 6 Gy IR and delays DNA damage repair respectively illustrated by downregulation of TRF2 and permanent increase of Ku80 and Ë H2AX expression at 1 h and 10 h post-IR. CONCLUSION: Down-regulation of TMPRSS4 increases triple negative breast cancer cell radiosensitivity and the use of TMPRSS4 inhibitor can be encouraged for improving radiotherapy effectiveness in TNBC radioresistant patients.


Assuntos
Apoptose/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Tolerância a Radiação/genética , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Regulação para Baixo/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/genética , Humanos
2.
Asian Pac J Cancer Prev ; 20(6): 1849-1856, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31244309

RESUMO

Background: TMPRSS4 is a novel Type II transmembrane serine protease found at the surface of the cells and is involved in the development and cancer progression. However, TMPRSS4 functions in breast cancer remain poor understand. The present study investigated the function of TMPRSS4 in the breast cancer cells and the potential mechanistic action underling. Materials and Methods: The lentiviral vectors causing TMPRSS4 down-regulation and over-expression were established and transfected in MDA-MB-468 and MCF-7 cells, respectively. By using the CCK- 8 assay, cell proliferation was analyzed. Moreover, western blot was used to detect the expression of certain proteins related to cell apoptosis (Bax and Bcl2) signaling pathway and telomere maintenance (POT1, TPP1, and UBE2D3). Cell cycle and cell apoptosis were also analyzed by using the Flow cytometry analysis. TMPRSS4 expression was detected at the mRNA level and protein level by performing qPCR and western blot technique, respectively. Results: TMPRSS4 expression is inhibited in stable transfected MDA-MB-468-shTMPRSS4 cells compared to the control MDA-MB-468-NC and its expression is up-regulated in stable transfected MCF-7-TMPTSS4 compared to its control MCF-7-NC. Moreover, TMPRSS4 silencing in breast cancer reduces cells proliferation by promoting cell cycle arrest in G2/M phase, cell apoptosis, and telomere maintenance impairment while the TMPRSS4 overexpression increases cells proliferation through cell apoptosis reduction and telomere maintenance reinforcement associated with insignificant change in cell cycle progression. Conclusion: TMPRSS4 plays important roles in cancer progression and may be considered as a good therapeutic target for cancer gene therapy especially breast cancer.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Homeostase do Telômero , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Feminino , Humanos , Proteínas de Membrana/genética , Serina Endopeptidases/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros , Células Tumorais Cultivadas
3.
Biomed Pharmacother ; 112: 108602, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784916

RESUMO

Cervical cancer remains one of the main factors leading to tumor-related death worldwide. Many strategies of cancer treatment such as chemotherapy are developed and used nowadays. However, for the cancer chemotherapy resistance, reduction of the limitation of cancer chemotherapy efficacy is one of the aims of several oncology teams. Moreover, the cyclin-dependent kinase 4/6-cyclin D-retinoblastoma protein-E2F pathway is an important mechanism for cell cycle control and its dysregulation is one of the key factors for cancers development including cervical cancer. Ribociclib is one of the selective CDK4/6 inhibitors and is a new therapeutic approach showing promise as a good strategy of therapy in many human cancers. However, there are not the studies regarding the investigation of effects of Ribociclib in cervical cancer yet. In the present study, by western blotting and immunofluorescence assay, we found respectively that CDK4, CDK6 and cyclin D1 are highly expressed and are mostly localized in the nucleus with some localized in the cytoplasm of cervical cancer cell lines. Moreover, Ribociclib induced cell cycle arrest in G0-G1 phase and cell apoptosis, and inhibited C33A cell proliferation in dose - dependent manner following by decreased expression of certain related genes such as CDK4, CDK6, E2F1, P-Rb, and increased Bax expression. In C33A xenografts, Ribociclib inhibited tumor growth associated with decreased expressions of CDK4, CDK6, cyclin D1, Rb and Ki-67, and also significantly increased tumor cell apoptosis. However, we didn't find side effect of Ribociclib concerning heart, liver and kidney perturbation and any Ribociclib anti-tumor effects on HeLa in vitro and in vivo which may be due to Hela cell infection by HPV. Based on our findings, the Rb-E2F pathway can be considered as an important factor in human cervical cancer pathogenesis and as a mechanism of Ribociclib, a potential strategy of treatment for the improvement of new therapeutic measures for the treatment of HPV-negative cervical cancer which application for HPV-positive cervical cancer is desired in further study.


Assuntos
Aminopiridinas/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Purinas/farmacologia , Neoplasias do Colo do Útero/enzimologia , Aminopiridinas/uso terapêutico , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Nus , Purinas/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Oncol Lett ; 17(1): 23-30, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30655734

RESUMO

Cancer is one of the leading causes of cancer-associated mortality worldwide. Several strategies of treatment, including radiotherapy, have been developed and used to treat this disease. However, post-treatment metastasis and resistance to treatment are two major causes for the limited effectiveness of radiotherapy in cancer patients. Epithelial-mesenchymal transition (EMT) is regulated by SNAIL family transcription factors, including Snail1 and Snail2 (Slug), and serves important roles in progression and cancer resistance to treatment. Snail1 and Slug also have been shown to be implicated in cancer treatment resistance. For resolving the resistance to treatment problems, combining the modulation of gene expression with radiotherapy is a novel strategy to treat patients with cancer. The present review focuses on the effect of Snail1 and Slug on cancer radiosensitivity by targeting cell apoptosis, the cell cycle and cell migration/invasion.

5.
Oncotarget ; 9(79): 35008-35025, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30405890

RESUMO

Cancer is one of the leading causes of death in the world. Many strategies of cancer treatment such as radiotherapy which plays a key role in cancer treatment are developed and used nowadays. However, the side effects post-cancer radiotherapy and cancer radioresistance are two major causes of the limitation of cancer radiotherapy effectiveness in the cancer patients. Moreover, reduction of the limitation of cancer radiotherapy effectiveness by reducing the side effects post-cancer radiotherapy and cancer radioresistance is the aim of several radiotherapy-oncologic teams. Otherwise, Telomere and telomerase are two cells components which play an important role in cancer initiation, cancer progression and cancer therapy resistance such as radiotherapy resistance. For resolving the problems of the limitation of cancer radiotherapy effectiveness especially the cancer radio-resistance problems, the radio-gene-therapy strategy which is the use of gene-therapy via modulation of gene expression combined with radiotherapy was developed and used as a new strategy to treat the patients with cancer. In this review, we summarized the information concerning the implication of telomere and telomerase modulation in cancer radiosensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...