Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35276971

RESUMO

Autism spectrum disorders (ASD) consist of a range of neurodevelopmental conditions accompanied by dysbiosis of gut microbiota. Therefore, a number of microbiota manipulation strategies were developed to restore their balance. However, a comprehensive comparison of the various methods on gut microbiota is still lacking. Here, we evaluated the effect of Bifidobacterium (BF) treatment and fecal microbiota transplantation (FT) on gut microbiota in a propionic acid (PPA) rat model of autism using 16S rRNA sequencing. Following PPA treatment, gut microbiota showed depletion of Bacteroidia and Akkermansia accompanied by a concomitant increase of Streptococcus, Lachnospiraceae, and Paraeggerthella. The dysbiosis was predicted to cause increased levels of porphyrin metabolism and impairments of acyl-CoA thioesterase and ubiquinone biosynthesis. On the contrary, BF and FT treatments resulted in a distinct increase of Clostridium, Bifidobacterium, Marvinbryantia, Butyricicoccus, and Dorea. The taxa in BF group positively correlated with vitamin B12 and flagella biosynthesis, while FT mainly enriched flagella biosynthesis. In contrast, BF and FT treatments negatively correlated with succinate biosynthesis, pyruvate metabolism, nitrogen metabolism, beta-Lactam resistance, and peptidoglycan biosynthesis. Therefore, the present study demonstrated that BF and FT treatments restored the PPA-induced dysbiosis in a treatment-specific manner.


Assuntos
Transtorno Autístico , Bifidobacterium longum , Microbioma Gastrointestinal , Animais , Bifidobacterium longum/genética , Transplante de Microbiota Fecal , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Propionatos , RNA Ribossômico 16S/genética , Ratos
3.
PLoS Pathog ; 15(4): e1007657, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30998782

RESUMO

Helminths are highly prevalent metazoan parasites that infect over a billion of the world's population. Hosts have evolved numerous mechanisms to drive the expulsion of these parasites via Th2-driven immunity, but these responses must be tightly controlled to prevent equally devastating immunopathology. However, mechanisms that regulate this balance are still unclear. Here we show that the vigorous Th2 immune response driven by the small intestinal helminth Trichinella spiralis, is associated with increased TGFß signalling responses in CD4+ T-cells. Mechanistically, enhanced TGFß signalling in CD4+ T-cells is dependent on dendritic cell-mediated TGFß activation which requires expression of the integrin αvß8. Importantly, mice lacking integrin αvß8 on DCs had a delayed ability to expel a T. spiralis infection, indicating an important functional role for integrin αvß8-mediated TGFß activation in promoting parasite expulsion. In addition to maintaining regulatory T-cell responses, the CD4+ T-cell signalling of this pleiotropic cytokine induces a Th17 response which is crucial in promoting the intestinal muscle hypercontractility that drives worm expulsion. Collectively, these results provide novel insights into intestinal helminth expulsion beyond that of classical Th2 driven immunity, and highlight the importance of IL-17 in intestinal contraction which may aid therapeutics to numerous diseases of the intestine.


Assuntos
Células Dendríticas/imunologia , Intestino Delgado/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Trichinella spiralis/imunologia , Triquinelose/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/parasitologia , Intestino Delgado/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Th17/parasitologia , Triquinelose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...