Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 187(4): 1916-1928, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235667

RESUMO

Insertion of membrane proteins into the lipid bilayer is a crucial step during their biosynthesis. Eukaryotic cells face many challenges in directing these proteins to their predestined target membrane. The hydrophobic signal peptide or transmembrane domain (TMD) of the nascent protein must be shielded from the aqueous cytosol and its target membrane identified followed by transport and insertion. Components that evolved to deal with each of these challenging steps range from chaperones to receptors, insertases, and sophisticated translocation complexes. One prominent translocation pathway for most proteins is the signal recognition particle (SRP)-dependent pathway which mediates co-translational translocation of proteins across or into the endoplasmic reticulum (ER) membrane. This textbook example of protein insertion is stretched to its limits when faced with secretory or membrane proteins that lack an amino-terminal signal sequence or TMD. Particularly, a large group of so-called tail-anchored (TA) proteins that harbor a single carboxy-terminal TMD require an alternative, post-translational insertion route into the ER membrane. In this review, we summarize the current research in TA protein insertion with a special focus on plants, address challenges, and highlight future research avenues.


Assuntos
Membrana Celular/metabolismo , Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Proteínas de Plantas/metabolismo , Transporte Proteico/efeitos dos fármacos
2.
Curr Biol ; 29(11): 1854-1865.e5, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31104938

RESUMO

Root hairs are tubular protrusions of the root epidermis that significantly enlarge the exploitable soil volume in the rhizosphere. Trichoblasts, the cell type responsible for root hair formation, switch from cell elongation to tip growth through polarization of the growth machinery to a predefined root hair initiation domain (RHID) at the plasma membrane. The emergence of this polar domain resembles the establishment of cell polarity in other eukaryotic systems [1-3]. Rho-type GTPases of plants (ROPs) are among the first molecular determinants of the RHID [4, 5], and later play a central role in polar growth [6]. Numerous studies have elucidated mechanisms that position the RHID in the cell [7-9] or regulate ROP activity [10-18]. The molecular players that target ROPs to the RHID and initiate outgrowth, however, have not been identified. We dissected the timing of the growth machinery assembly in polarizing hair cells and found that positioning of molecular players and outgrowth are temporally separate processes that are each controlled by specific ROP guanine nucleotide exchange factors (GEFs). A functional analysis of trichoblast-specific GEFs revealed GEF3 to be required for normal ROP polarization and thus efficient root hair emergence, whereas GEF4 predominantly regulates subsequent tip growth. Ectopic expression of GEF3 induced the formation of spatially confined, ROP-recruiting domains in other cell types, demonstrating the role of GEF3 to serve as a membrane landmark during cell polarization.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Raízes de Plantas/crescimento & desenvolvimento , Proteínas rho de Ligação ao GTP/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Raízes de Plantas/genética , Proteínas rho de Ligação ao GTP/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(12): 5795-5804, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833400

RESUMO

In flowering plants, the asymmetrical division of the zygote is the first hallmark of apical-basal polarity of the embryo and is controlled by a MAP kinase pathway that includes the MAPKKK YODA (YDA). In Arabidopsis, YDA is activated by the membrane-associated pseudokinase SHORT SUSPENSOR (SSP) through an unusual parent-of-origin effect: SSP transcripts accumulate specifically in sperm cells but are translationally silent. Only after fertilization is SSP protein transiently produced in the zygote, presumably from paternally inherited transcripts. SSP is a recently diverged, Brassicaceae-specific member of the BRASSINOSTEROID SIGNALING KINASE (BSK) family. BSK proteins typically play broadly overlapping roles as receptor-associated signaling partners in various receptor kinase pathways involved in growth and innate immunity. This raises two questions: How did a protein with generic function involved in signal relay acquire the property of a signal-like patterning cue, and how is the early patterning process activated in plants outside the Brassicaceae family, where SSP orthologs are absent? Here, we show that Arabidopsis BSK1 and BSK2, two close paralogs of SSP that are conserved in flowering plants, are involved in several YDA-dependent signaling events, including embryogenesis. However, the contribution of SSP to YDA activation in the early embryo does not overlap with the contributions of BSK1 and BSK2. The loss of an intramolecular regulatory interaction enables SSP to constitutively activate the YDA signaling pathway, and thus initiates apical-basal patterning as soon as SSP protein is translated after fertilization and without the necessity of invoking canonical receptor activation.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transdução de Sinais/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/metabolismo , Sementes/fisiologia , Zigoto/metabolismo , Zigoto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...