Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Insights ; 16: 11786361221150759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895787

RESUMO

Kerosene is widely used in Ethiopia as a household fuel (for lighting and heating), as a solvent in paint and grease, and as a lubricant in glass cutting. It causes environmental pollution and escorts to loss of ecological functioning and health problems. Therefore, this research was designed to isolate, identify, and characterize indigenous kerosene-degrading bacteria that are effective in cleaning ecological units that have been contaminated by kerosene. Soil samples were collected from hydrocarbon-contaminated sites (flower farms, garages, and old-aged asphalt roads) and spread-plated on mineral salt medium (Bushnell Hass Mineral Salts Agar Medium: BHMS), which consists of kerosene as the only carbon source. Seven kerosene-degrading bacterial species were isolated, 2 from flower farms, 3 from garage areas, and 2 from asphalt areas. Three genera from hydrocarbon-contaminated sites were identified, including Pseudomonas, Bacillus, and Acinetobacter using biochemical characterization and the Biolog database. Growth studies in the presence of various concentrations of kerosene (1% and 3% v/v) showed that the bacterial isolates could metabolize kerosene as energy and biomass. Thereby, a gravimetric study was performed on bacterial strains that proliferated well on a BHMS medium with kerosene. Remarkably, bacterial isolates were able to degrade 5% kerosene from 57.2% to 91% in 15 days. Moreover, 2 of the most potent isolates, AUG2 and AUG1, resulted in 85% and 91% kerosene degradation, respectively, when allowed to grow on a medium containing kerosene. In addition, 16S rRNA gene analysis indicated that strain AAUG1 belonged to Bacillus tequilensis, whereas isolate AAUG showed the highest similarity to Bacillus subtilis. Therefore, these indigenous bacterial isolates have the potential to be applied for kerosene removal from hydrocarbon-contaminated sites and the development of remediation approaches.

2.
Int J Microbiol ; 2022: 5655767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096070

RESUMO

Hydrocarbon-derived pollutants are becoming one of the most concerning ecological issues. Thus, there is a need to investigate and develop innovative, low-cost, eco-friendly, and fast techniques to reduce and/or eliminate pollutants using biological agents. The study was conducted to isolate, characterize, and identify potential diesel-degrading bacteria. Samples were collected from flower farms, lakeshores, old aged garages, asphalt, and bitumen soils and spread on selective medium (Bushnell Haas mineral salt agar) containing diesel as the growth substrate. The isolates were characterized based on their growth patterns using optical density measurement, biochemical tests, and gravimetric analysis and identified using the Biolog database and 16S rRNA gene sequencing techniques. Subsequently, six diesel degraders were identified and belong to Pseudomonas, Providencia, Roseomonas, Stenotrophomonas, Achromobacter, and Bacillus. Among these, based on gravimetric analysis, the three potent isolates AAUW23, AAUG11, and AAUG36 achieved 84%, 83.4%, and 83% diesel degradation efficiency, respectively, in 15 days. Consequently, the partial 16S rRNA gene sequences revealed that the two most potent bacterial strains (AAUW23 and AAUG11) were Pseudomonas aeruginosa, while AAUG36 was Bacillus subtilis. This study demonstrated that bacterial species isolated from hydrocarbon-contaminated and/or uncontaminated environments could be optimized to be used as potential bioremediation agents for diesel removal.

3.
Microb Ecol ; 84(1): 73-89, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34410455

RESUMO

Understanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Drinking water distribution systems harbor various microbiota despite efforts made in improving water infrastructures in the water industry, especially, in developing countries. Intermittent water supply, long time of water storage, low water pressure, and contaminated source water are among many of the factors responsible for poor drinking water quality affecting health of people. The aim of this study was to explore microbial diversity and structure in water samples collected from source water, treated water, reservoirs, and household points of use locations (taps). High-throughput Illumina sequencing technology was employed by targeting the V4 region of the 16S rRNA gene and the V1-V3 region of the 18S rRNA gene to analyze the microbial community structure. Proteobacteria followed by Firmicutes, Bacteroidetes, and Actinobacteria were the core dominating taxa. Gammaproteobacteria was also dominant among other proteobacterial classes across all sampling points. Opportunistic bacterial genera such as Pseudomonas, Legionella, Klebsiella, Escherichia, and Actinobacteria, as well as eukaryotic microbes like Cryptosporidium, Hartmannella, Acanthamoeba, Aspergillus, and Candida were also abundant taxa found along the distribution systems. The shift in microbial community structure from source to point of use locations was influenced by basic factors such as residual chlorine, intermittent water supply, and long-time storage at the household. The complex microbiota detected in different sampling sites in this study brings drinking water quality problem which further causes significant health problems to both human and animal health. Treatment ineffectiveness, disinfection inefficiency, poor maintenance actions, leakage of sewage, and other domestic wastes are few among many other factors responsible for degraded drinking water quality in this study putting health at high risk. Findings of this research provide important and baseline information to understand the microbial profiles of drinking water along source water and distribution systems. Moreover, knowing the microbial profile will help to design proper water quality assurance approaches.


Assuntos
Actinobacteria , Criptosporidiose , Cryptosporidium , Água Potável , Microbiota , Purificação da Água , Actinobacteria/genética , Bactérias/genética , Cryptosporidium/genética , Etiópia , Humanos , Proteobactérias/genética , RNA Ribossômico 16S/genética , Microbiologia da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...