Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108780

RESUMO

Phosphodiesterases are key regulators that fine tune the intracellular levels of cyclic nucleotides, given their ability to hydrolyze cAMP and cGMP. They are critical regulators of cAMP/cGMP-mediated signaling pathways, modulating their downstream biological effects such as gene expression, cell proliferation, cell-cycle regulation but also inflammation and metabolic function. Recently, mutations in PDE genes have been identified and linked to human genetic diseases and PDEs have been demonstrated to play a potential role in predisposition to several tumors, especially in cAMP-sensitive tissues. This review summarizes the current knowledge and most relevant findings regarding the expression and regulation of PDE families in the testis focusing on PDEs role in testicular cancer development.


Assuntos
Neoplasias Testiculares , Masculino , Humanos , Neoplasias Testiculares/genética , AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , GMP Cíclico/metabolismo
2.
Biomedicines ; 10(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327442

RESUMO

Intracellular calcium (Ca2+) is the central regulator of heart contractility. Indeed, it couples the electrical signal, which pervades the myocardium, with cardiomyocytes contraction. Moreover, alterations in calcium management are the main factors contributing to the mechanical and electrical dysfunction observed in failing hearts. So, simultaneous analysis of the contractile function and intracellular Ca2+ is indispensable to evaluate cardiomyocytes activity. Intracellular Ca2+ variations and fraction shortening are commonly studied with fluorescent Ca2+ indicator dyes associated with microscopy techniques. However, tracking and dealing with multiple files manually is time-consuming and error-prone and often requires expensive apparatus and software. Here, we announce a new, user-friendly image processing and analysis tool, based on ImageJ-Fiji/MATLAB® software, to evaluate the major cardiomyocyte functional parameters. We succeeded in analyzing fractional cell shortening, Ca2+ transient amplitude, and the kinematics/dynamics parameters of mouse isolated adult cardiomyocytes. The proposed method can be applied to evaluate changes in the Ca2+ cycle and contractile behavior in genetically or pharmacologically induced disease models, in drug screening and other common applications to assess mammalian cardiomyocyte functions.

3.
Front Immunol ; 12: 728381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539667

RESUMO

Carcinomas evade the host immune system by negatively modulating CD4+ and CD8+ T effector lymphocytes through forkhead box protein 3 (FOXP3) positive T regulatory cells' increased activity. Furthermore, interaction of the programmed cell death 1 (PD1) molecule and its ligand programmed cell death ligand 1 (PDL1) inhibits the antitumor activity of PD1+ T lymphocytes. Immunotherapy has become a powerful strategy for tailored cancer patients' treatment both in adult and pediatric patients aiming to generate potent antitumor responses. Nevertheless, immunotherapies can generate autoimmune responses. This study aimed to investigate the potential effect of the transformation-related protein 53 (p53) reactivation by a peptide-based inhibitor of the MDM2/MDM4 heterodimer (Pep3) on the immune response in a solid cancer, i.e., thyroid carcinoma frequently presenting with thyroid autoimmunity. In peripheral blood mononuclear cell of thyroid cancer patients, Pep3 treatment alters percentages of CD8+ and CD4+ T regulatory and CD8+ and CD4+ T effector cells and favors an anticancer immune response. Of note that reduced frequencies of activated CD8+ and CD4+ T effector cells do not support autoimmunity progression. In evaluating PD1 expression under p53 activation, a significant decrease of activated CD4+PD1+ cells was detected in thyroid cancer patients, suggesting a defective regulation in the initial activation stage, therefore generating a protective condition toward autoimmune progression.


Assuntos
Antineoplásicos/farmacologia , Autoanticorpos/sangue , Autoimunidade/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Peptídeos/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Células Cultivadas , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Neoplasias da Glândula Tireoide/imunologia , Neoplasias da Glândula Tireoide/metabolismo
4.
Cell Death Dis ; 12(6): 558, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34052831

RESUMO

Epithelial ovarian cancer (EOC) is a highly heterogeneous disease with a high death rate mainly due to the metastatic spread. The expression of MDM4, a well-known p53-inhibitor, is positively associated with chemotherapy response and overall survival (OS) in EOC. However, the basis of this association remains elusive. We show that in vivo MDM4 reduces intraperitoneal dissemination of EOC cells, independently of p53 and an immune-competent background. By 2D and 3D assays, MDM4 impairs the early steps of the metastatic process. A 3D-bioprinting system, ad hoc developed by co-culturing EOC spheroids and endothelial cells, showed reduced dissemination and intravasation into vessel-like structures of MDM4-expressing cells. Consistent with these data, high MDM4 levels protect mice from ovarian cancer-related death and, importantly, correlate with increased 15 y OS probability in large data set analysis of 1656 patients. Proteomic analysis of EOC 3D-spheroids revealed decreased protein synthesis and mTOR signaling, upon MDM4 expression. Accordingly, MDM4 does not further inhibit cell migration when its activity towards mTOR is blocked by genetic or pharmacological approaches. Importantly, high levels of MDM4 reduced the efficacy of mTOR inhibitors in constraining cell migration. Overall, these data demonstrate that MDM4 impairs EOC metastatic process by inhibiting mTOR activity and suggest the usefulness of MDM4 assessment for the tailored application of mTOR-targeted therapy.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias Ovarianas/genética , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Feminino , Humanos , Camundongos , Metástase Neoplásica , Neoplasias Ovarianas/mortalidade , Análise de Sobrevida
5.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326334

RESUMO

Phosphodiesterase 2A (PDE2A) is a cAMP-cGMP hydrolyzing enzyme essential for mouse development and the PDE2A knockout model (PDE2A-/-) is embryonic lethal. Notably, livers of PDE2A-/- embryos at embryonic day 14.5 (E14.5) have extremely reduced size. Morphological, cellular and molecular analyses revealed loss of integrity in the PDE2A-/- liver niche that compromises the hematopoietic function and maturation. Hematopoietic cells isolated from PDE2A-/- livers are instead able to differentiate in in vitro assays, suggesting the absence of blood cell-autonomous defects. Apoptosis was revealed in hepatoblasts and at the endothelial and stromal compartments in livers of PDE2A-/- embryos. The increase of the intracellular cAMP level and of the inducible cAMP early repressor (ICER) in liver of PDE2A-/- embryos might explain the impairment of liver development by downregulating the expression of the anti-apoptotic gene Bcl2. In summary, we propose PDE2A as an essential gene for integrity maintenance of liver niche and the accomplishment of hematopoiesis.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Hematopoese/genética , Fígado/embriologia , Fígado/metabolismo , Organogênese/genética , Animais , Apoptose/genética , Biomarcadores , Diferenciação Celular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Genótipo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mutação , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Estromais/metabolismo
6.
Cardiovasc Res ; 114(6): 830-845, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29409032

RESUMO

Aims: Phosphodiesterase 2 A (Pde2A), a cAMP-hydrolysing enzyme, is essential for mouse development; however, the cause of Pde2A knockout embryonic lethality is unknown. To understand whether Pde2A plays a role in cardiac development, hearts of Pde2A deficient embryos were analysed at different stage of development. Methods and results: At the stage of four chambers, Pde2A deficient hearts were enlarged compared to the hearts of Pde2A heterozygous and wild-type. Pde2A knockout embryos revealed cardiac defects such as absence of atrial trabeculation, interventricular septum (IVS) defects, hypertrabeculation and thinning of the myocardial wall and in rare cases they had overriding aorta and valves defects. E14.5 Pde2A knockouts showed reduced cardiomyocyte proliferation and increased apoptosis in the IVS and increased proliferation in the ventricular trabeculae. Analyses of E9.5 Pde2A knockout embryos revealed defects in cardiac progenitor and neural crest markers, increase of Islet1 positive and AP2 positive apoptotic cells. The expression of early cTnI and late Mef2c cardiomyocyte differentiation markers was strongly reduced in Pde2A knockout hearts. The master transcription factors of cardiac development, Tbx, were down-regulated in E14.5 Pde2A knockout hearts. Absence of Pde2A caused an increase of intracellular cAMP level, followed by an up-regulation of the inducible cAMP early repressor, Icer in fetal hearts. In vitro experiments on wild-type fetal cardiomyocytes showed that Tbx gene expression is down-regulated by cAMP inducers. Furthermore, Pde2A inhibition in vivo recapitulated the heart defects observed in Pde2A knockout embryos, affecting cardiac progenitor cells. Interestingly, the expression of Pde2A itself was dramatically affected by Pde2A inhibition, suggesting a potential autoregulatory loop. Conclusions: We demonstrated for the first time a direct relationship between Pde2A impairment and the onset of mouse congenital heart defects, highlighting a novel role for cAMP in cardiac development regulation.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/deficiência , Coração Fetal/enzimologia , Cardiopatias Congênitas/enzimologia , Miócitos Cardíacos/enzimologia , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Células Cultivadas , AMP Cíclico/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Coração Fetal/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Idade Gestacional , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Miócitos Cardíacos/patologia , Fenótipo , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Troponina I/genética , Troponina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...