Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 283(1843)2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27881744

RESUMO

Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here, we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and T. speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient.


Assuntos
Evolução Biológica , Variação Genética , Genética Populacional , Sciuridae/classificação , Seleção Genética , Animais , Modelos Genéticos , Fenótipo
2.
J Phys Chem A ; 118(21): 3717-3725, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24810016

RESUMO

Iridium-based compounds are materials of great interest in the production of highly efficient organic light emitting diodes and several other applications. However, these organometallic compounds present relative low stability due to photodegradation processes still not well understood. In this work we investigated paramagnetic states induced by UV photoexcitation on iridium(III) bis[(4,6-fluorophenyl)-pyridinato-N,C2']picolinate (FIrpic) and iridium(III)-tris(2-phenylpyridine) (Ir(ppy)3) complexes dispersed in different polymeric matrices by electron spin resonance (ESR). Photogenerated charged states with relatively strong hyperfine interactions were observed and attributed to matrix/complex charge-transfer processes. Measurements of the signal amplitude decay after photoexcitation interruption were performed as a function of temperature. The photoinduced centers are thermally activated with energy barrier between 0.3 and 0.6 eV. Electronic structure calculations suggest that the signals observed by ESR are associated with metastable negatively charged Ir complexes distorted structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...