RESUMO
The present work reports the inhibitory effect of amides derived from gallic acid (gallamides) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), along with cytotoxicity evaluation and molecular docking studies. In addition to gallamides, other relevant compounds were also synthesized and evaluated against Mpro, making a total of 25 compounds. Eight compounds presented solubility issues during the inhibitory assay and one showed no inhibitory activity. Compounds 3a, 3b, and 3f showed the highest enzymatic inhibition with IC50 = 0.26 ± 0.19 µM, 0.80 ± 0.38 µM, and 2.87 ± 1.17 µM, respectively. Selenogallamide 6a exhibited IC50 values of 5.42 ± 2.89 µM and a comparison with its nonselenylated congener 3c shows that the insertion of the chalcogen moiety improved the inhibitory capacity of the compound by approximately 10 times. Regarding the cellular toxicity in THP-1 and Vero cells, compounds 3e and 3g, showed moderate cytotoxicity in Vero cells, while for THP-1 both were nontoxic, with CC50 > 150 µM. Derivative 3d showed moderate cytotoxicity against both cell lines, whereas 6d was moderatly toxic to THP-1. Other compounds analyzed do not induce substantial cellular toxicity at the concentrations tested. The molecular docking results for compounds 3a, 3b, and 3f show that hydrogen bonding interactions involving the hydroxyl groups (OH) of the gallate moiety are relevant, as well as the carbonyl group.
Assuntos
Amidas , Antivirais , Proteases 3C de Coronavírus , Ácido Gálico , Simulação de Acoplamento Molecular , Inibidores de Proteases , SARS-CoV-2 , Humanos , Células Vero , Chlorocebus aethiops , Ácido Gálico/farmacologia , Ácido Gálico/síntese química , Ácido Gálico/química , Ácido Gálico/análogos & derivados , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Animais , Relação Estrutura-Atividade , Amidas/farmacologia , Amidas/síntese química , Amidas/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Simulação por Computador , Tratamento Farmacológico da COVID-19 , Concentração Inibidora 50 , Sobrevivência Celular/efeitos dos fármacosRESUMO
In this overview, we present our analysis of the future of organic synthesis in Brazil, a highly innovative and strategic area of research which underpins our social and economical progress. Several different topics (automation, catalysis, green chemistry, scalability, methodological studies and total syntheses) were considered to hold promise for the future advance of chemical sciences in Brazil. In order to put it in perspective, contributions from Brazilian laboratories were selected by the citations received and importance for the field and were benchmarked against some of the most important results disclosed by authors worldwide. The picture that emerged reveals a thriving area of research, with new generations of well-trained and productive chemists engaged particularly in the areas of green chemistry and catalysis. In order to fulfill the promise of delivering more efficient and sustainable processes, an integration of the academic and industrial research agendas is to be expected. On the other hand, academic research in automation of chemical processes, a well established topic of investigation in industrial settings, has just recently began in Brazil and more academic laboratories are lining up to contribute. All these areas of research are expected to enable the future development of the almost unchartered field of scalability.
RESUMO
ABSTRACT In this overview, we present our analysis of the future of organic synthesis in Brazil, a highly innovative and strategic area of research which underpins our social and economical progress. Several different topics (automation, catalysis, green chemistry, scalability, methodological studies and total syntheses) were considered to hold promise for the future advance of chemical sciences in Brazil. In order to put it in perspective, contributions from Brazilian laboratories were selected by the citations received and importance for the field and were benchmarked against some of the most important results disclosed by authors worldwide. The picture that emerged reveals a thriving area of research, with new generations of well-trained and productive chemists engaged particularly in the areas of green chemistry and catalysis. In order to fulfill the promise of delivering more efficient and sustainable processes, an integration of the academic and industrial research agendas is to be expected. On the other hand, academic research in automation of chemical processes, a well established topic of investigation in industrial settings, has just recently began in Brazil and more academic laboratories are lining up to contribute. All these areas of research are expected to enable the future development of the almost unchartered field of scalability.