Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell Surf ; 11: 100128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938582

RESUMO

Host recognition of the pathogen-associated molecular pattern (PAMP), ß-1,3-glucan, plays a major role in antifungal immunity. ß-1,3-glucan is an essential component of the inner cell wall of the opportunistic pathogen Candida albicans. Most ß-1,3-glucan is shielded by the outer cell wall layer of mannan fibrils, but some can become exposed at the cell surface. In response to host signals such as lactate, C. albicans shaves the exposed ß-1,3-glucan from its cell surface, thereby reducing the ability of innate immune cells to recognise and kill the fungus. We have used sets of barcoded xog1 and eng1 mutants to compare the impacts of the secreted ß-glucanases Xog1 and Eng1 upon C. albicans in vitro and in vivo. Flow cytometry of Fc-dectin-1-stained strains revealed that Eng1 plays the greater role in lactate-induced ß-1,3-glucan masking. Transmission electron microscopy and stress assays showed that neither Eng1 nor Xog1 are essential for cell wall maintenance, but the inactivation of either enzyme compromised fungal adhesion to gut and vaginal epithelial cells. Competitive barcode sequencing suggested that neither Eng1 nor Xog1 strongly influence C. albicans fitness during systemic infection or vaginal colonisation in mice. However, the deletion of XOG1 enhanced C. albicans fitness during gut colonisation. We conclude that both Eng1 and Xog1 exert subtle effects on the C. albicans cell surface that influence fungal adhesion to host cells and that affect fungal colonisation in certain host niches.

2.
mBio ; 15(2): e0189823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259065

RESUMO

Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, ß-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced ß-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced ß-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger ß-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences ß-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (ß-1,3-glucan) at its cell surface. Most of the ß-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some ß-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases ß-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to ß-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in ß-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates ß-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.


Assuntos
Candida albicans , Glucanos , beta-Glucanas , Humanos , Candida albicans/metabolismo , Glucanos/metabolismo , Dióxido de Carbono/metabolismo , Moléculas com Motivos Associados a Patógenos , Hipóxia/metabolismo , Lactatos/metabolismo , Parede Celular/metabolismo
3.
Ann Bot ; 132(6): 1055-1072, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37814841

RESUMO

BACKGROUND: A general view in the study of pollination syndromes is that floral traits usually represent convergent floral adaptations to specific functional pollinator groups. However, the definition of convergence is elusive and contradictory in the literature. Is convergence the independent evolution of either the same trait or similar traits with the same function? A review of the concept of convergence in developmental biology and phylogenetic systematics may shed new light in studies of pollination syndromes. SCOPE: The aims of this article are (1) to explore the notion of convergence and other concepts (analogy, homoplasy and parallelism) within the theory and practice of developmental evolution and phylogenetic systematics; (2) to modify the definitions of syndromes in order to embrace the concepts of analogy and convergence; (3) to revisit the bat pollination syndrome in the context of angiosperm phylogeny, with focus on the showy 'petaloid' organs associated with the syndrome; (4) to revisit the genetic-developmental basis of flower colour; (5) to raise evolutionary hypotheses of floral evolution associated with the bat pollination syndrome; and (6) to highlight some of the current frontiers of research on the origin and evolution of flowers and its impact on pollination syndrome studies in the 21st century. CONCLUSIONS: The inclusion of the concepts of analogy and convergence within the concept of syndromes will constitute a new agenda of inquiry that integrates floral biology, phylogenetic systematics and developmental biology. Phyllostomid and pteropodid bat pollination syndrome traits in eudicots and monocots represent cases of analogous and convergent evolution. Pollination syndromes are a multivariate concept intrinsically related to the understanding of flower organogenesis and evolution. The formulation of hypotheses of pollination syndromes must consider the phylogenetic levels of universality for both plant and animal taxa, flower development, genetics, homology and evolution, and a clear definition of evolutionary concepts, including analogy, convergence, homoplasy and parallelism.


Assuntos
Quirópteros , Polinização , Animais , Filogenia , Quirópteros/genética , Fenótipo , Reprodução , Flores/genética
4.
PLoS Pathog ; 19(7): e1011505, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428810

RESUMO

Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.


Assuntos
Candida albicans , Glucose , Humanos , Animais , Camundongos , Glucose/metabolismo , Estresse Oxidativo/fisiologia , Neutrófilos , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo
5.
Cladistics ; 39(5): 398-417, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37097257

RESUMO

As it spread through time and into distinct areas of science-from comparative anatomy to evolutionary biology, cladistics, developmental and molecular biology-the homology concept has changed considerably, presenting various meanings. Despite many attempts at developing a comprehensive understanding of the concept, this context-sensitive notion of homology has been a subject of an ongoing debate. Inspired by that and following Kevin de Queiroz and Richard Mayden's view on species concept and delimitation, we presented in this article an attempt to systematize and advance the understanding of the homology problem. Our main goals were: (i) to present a comprehensive checklist of 'concepts of homology'; (ii) to identify which are really concepts with ontological definitions (theoretically rooted in structural correspondence and common ancestry), and which are, in fact, not concepts, but epistemological (empirical and methodological) criteria of homology delimitation; (iii) to provide a synonymy of the concepts and criteria of homology delimitation; (iv) to present a hierarchy of homology concepts within Hennig's hologenetic system; and (v) to endorse the adoption of a unified view of homology by treating homology as a correspondence of spatio-temporal properties (genetic, epigenetic, developmental and positional) at the level of the individual, species or monophyletic group. We found 59 'concepts of homology' in the literature, from which 34 were categorically treated as concepts, 17 as criteria of homology delimitation, Four were excluded from our treatment, and Müller's five concepts were rather treated as approaches to homology. Homology concepts and criteria were synonymized based on structural correspondence, replicability, common ancestry, genetic and epigenetic developmental causes, position and optimization. Regarding the synonymy, we conclusively recognized 21 different concepts of homology, and five empirical and four methodological criteria. Hierarchical ontological aspects of homology were systematized under Hennig's hologenetic system, based on the existence of ontogenetic, tokogenetic and phylogenetic levels of homology. The delimitation of tokogenetic and phylogenetic homologies depends on optimization criteria. The unified view of homology is discussed in the context of the ancestral angiosperm flower.


Assuntos
Evolução Biológica , Biologia Molecular , Filogenia , Anatomia Comparada
6.
PLoS Genet ; 18(12): e1010502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508464

RESUMO

Fungal growth and development are coordinated with specific secondary metabolism. This coordination requires 8 of 74 F-box proteins of the filamentous fungus Aspergillus nidulans. F-box proteins recognize primed substrates for ubiquitination by Skp1-Cul1-Fbx (SCF) E3 ubiquitin RING ligases and degradation by the 26S proteasome. 24 F-box proteins are found in the nuclear fraction as part of SCFs during vegetative growth. 43 F-box proteins interact with SCF proteins during growth, development or stress. 45 F-box proteins are associated with more than 700 proteins that have mainly regulatory roles. This corroborates that accurate surveillance of protein stability is prerequisite for organizing multicellular fungal development. Fbx23 combines subcellular location and protein stability control, illustrating the complexity of F-box mediated regulation during fungal development. Fbx23 interacts with epigenetic methyltransferase VipC which interacts with fungal NF-κB-like velvet domain regulator VeA that coordinates fungal development with secondary metabolism. Fbx23 prevents nuclear accumulation of methyltransferase VipC during early development. These results suggest that in addition to their role in protein degradation, F-box proteins also control subcellular accumulations of key regulatory proteins for fungal development.


Assuntos
Aspergillus nidulans , Proteínas F-Box , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Metiltransferases/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo
7.
mBio ; 13(6): e0260522, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36218369

RESUMO

Candida albicans exists as a commensal of mucosal surfaces and the gastrointestinal tract without causing pathology. However, this fungus is also a common cause of mucosal and systemic infections when antifungal immune defenses become compromised. The activation of antifungal host defenses depends on the recognition of fungal pathogen-associated molecular patterns (PAMPs), such as ß-1,3-glucan. In C. albicans, most ß-1,3-glucan is present in the inner cell wall, concealed by the outer mannan layer, but some ß-1,3-glucan becomes exposed at the cell surface. In response to host signals, such as lactate, C. albicans induces the Xog1 exoglucanase, which shaves exposed ß-1,3-glucan from the cell surface, thereby reducing phagocytic recognition. We show here that ß-1,3-glucan is exposed at bud scars and punctate foci on the lateral wall of yeast cells, that this exposed ß-1,3-glucan is targeted during phagocytic attack, and that lactate-induced masking reduces ß-1,3-glucan exposure at bud scars and at punctate foci. ß-1,3-Glucan masking depends upon protein kinase A (PKA) signaling. We reveal that inactivating PKA, or its conserved downstream effectors, Sin3 and Mig1/Mig2, affects the amounts of the Xog1 and Eng1 glucanases in the C. albicans secretome and modulates ß-1,3-glucan exposure. Furthermore, perturbing PKA, Sin3, or Mig1/Mig2 attenuates the virulence of lactate-exposed C. albicans cells in Galleria. Taken together, the data are consistent with the idea that ß-1,3-glucan masking contributes to Candida pathogenicity. IMPORTANCE Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their "pathogen-associated molecular patterns" (PAMPs), which are recognized as "foreign" and used to activate protective immunity. The commensal fungus Candida albicans masks the proinflammatory PAMP ß-1,3-glucan, which is an essential component of its cell wall. Most of this ß-1,3-glucan is hidden beneath an outer layer of the cell wall on these microbes, but some can become exposed at the fungal cell surface. Using high-resolution confocal microscopy, we examine the nature of the exposed ß-1,3-glucan at C. albicans bud scars and at punctate foci on the lateral cell wall, and we show that these features are targeted by innate immune cells. We also reveal that downstream effectors of protein kinase A (Mig1/Mig2, Sin3) regulate the secretion of major glucanases, modulate the levels of ß-1,3-glucan exposure, and influence the virulence of C. albicans in an invertebrate model of systemic infection. Our data support the view that ß-1,3-glucan masking contributes to immune evasion and the virulence of a major fungal pathogen of humans.


Assuntos
Candida albicans , beta-Glucanas , Antifúngicos/farmacologia , beta-Glucanas/metabolismo , Parede Celular/metabolismo , Cicatriz/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucanos/metabolismo , Lactatos/metabolismo , Moléculas com Motivos Associados a Patógenos
8.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36139808

RESUMO

Plasma cholesteryl ester transfer protein (CETP) activity diminishes HDL-cholesterol levels and thus may increase atherosclerosis risk. Experimental evidence suggests CETP may also exhibit anti-inflammatory properties, but local tissue-specific functions of CETP have not yet been clarified. Since oxidative stress and inflammation are major features of atherogenesis, we investigated whether CETP modulates macrophage oxidant production, inflammatory and metabolic profiles. Comparing macrophages from CETP-expressing transgenic mice and non-expressing littermates, we observed that CETP expression reduced mitochondrial superoxide anion production and H2O2 release, increased maximal mitochondrial respiration rates, and induced elongation of the mitochondrial network and expression of fusion-related genes (mitofusin-2 and OPA1). The expression of pro-inflammatory genes and phagocytic activity were diminished in CETP-expressing macrophages. In addition, CETP-expressing macrophages had less unesterified cholesterol under basal conditions and after exposure to oxidized LDL, as well as increased HDL-mediated cholesterol efflux. CETP knockdown in human THP1 cells increased unesterified cholesterol and abolished the effects on mitofusin-2 and TNFα. In summary, the expression of CETP in macrophages modulates mitochondrial structure and function to promote an intracellular antioxidant state and oxidative metabolism, attenuation of pro-inflammatory gene expression, reduced cholesterol accumulation, and phagocytosis. These localized functions of CETP may be relevant for the prevention of atherosclerosis and other inflammatory diseases.

9.
Front Mol Biosci ; 9: 839428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372506

RESUMO

Statins are successful drugs used to treat hypercholesterolemia, a primary cause of atherosclerosis. In this work, we investigated how hypercholesterolemia and pravastatin treatment impact macrophage and mitochondria functions, the key cell involved in atherogenesis. By comparing bone marrow-derived macrophages (BMDM) of wild-type (WT) and LDL receptor knockout (LDLr-/-) mice, we observed hypercholesterolemia increased the number of contact sites at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), enhanced mitochondrial hydrogen peroxide release, altered the gene expression of inflammatory markers, and increased oxidized LDL (ox-LDL) uptake and phagocytic activity. Three months of in vivo pravastatin treatment of LDLr-/- mice reversed the number of contact sites at the MAM, ox-LDL uptake, and phagocytosis in LDLr-/- BMDM. Additionally, pravastatin increased BMDM mitochondrial network branching. In peritoneal macrophages (PMs), hypercholesterolemia did not change MAM stability, but stimulated hydrogen peroxide production and modulated gene expression of pro- and anti-inflammatory markers. It also increased mitochondrial branching degree and had no effects on ox-LDL uptake and phagocytosis in PM. Pravastatin treatment increased superoxide anion production and changed inflammation-related gene expression in LDLr-/- PM. In addition, pravastatin increased markedly the expression of the mitochondrial dynamics-related genes Mfn2 and Fis1 in both macrophages. In summary, our results show that hypercholesterolemia and pravastatin treatment affect macrophage mitochondria network structure as well as their interaction with the endoplasmic reticulum (ER). These effects impact on macrophage conversion rates to foam cell and macrophage phagocytic capacity. These findings associate MAM stability changes with known mechanisms involved in atherosclerosis progression and resolution.

10.
Cladistics ; 38(2): 246-263, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35277894

RESUMO

Using Lauraceae as a study case, we aimed in this article to: (i) delimit areas of endemism in the Espinhaço Range, Brazil; (ii) compare these areas of endemism with those previously delimited, as well as with the centres of endemism; (iii) evaluate the association between areas of endemism and vegetation types; and (iv) classify the areas of endemism according to the International Code of Area Nomenclature (ICAN). Based on a recent survey of 99 species from the Espinhaço Range, our dataset consisted of 34 endemic species belonging to nine genera. Following previous studies, we performed parsimony analysis of endemicity (PAE) using a grid square size of 0.5° × 0.5°. We delimited four areas of endemism of Lauraceae: (i) Antônio dos Santos, (ii) Conceição do Mato Dentro, (iii) Itambé do Mato Dentro, and (iv) Rio de Contas; and confirmed six previously delimited areas of endemism: (i) Southern MG, (ii) Southern Mountains Complex, (iii) Conceição do Mato Dentro, (iv) Diamantina Plateau, (v) Serra do Cabral, and (vi) Chapada Diamantina. The areas of endemism Conceição do Mato Dentro, Serra do Cabral, Diamantina, and Serra do Cipó were classified as subdistricts in the Diamantina Plateau district of the Southern Espinhaço province. We summarized and mapped all areas of endemism corresponding to the provinces, districts, and subdistricts that cover the Espinhaço Range. Areas of endemism and centres of endemism are contrasted. Finally, we highlight that the biogeographic studies along this mountain range should embrace higher taxa with representative species in different types of vegetation in order to enrich the majority of the endemism studies mainly concentrated on the campo rupestre. Unusual distribution patterns, diversity of vegetation types, and the presence of restricted species and monophyletic groups open up opportunities to carry out integrative studies concerning the biogeographic regionalization of the ER at multiple spatio-temporal scales.


Assuntos
Lauraceae , Brasil
11.
Biochem Biophys Res Commun ; 606: 61-67, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35339753

RESUMO

Macrophages play a role in host defense, tissue remodeling and inflammation. Different inflammatory stimuli drive macrophage phenotypes and responses. In this study we investigated the relationship between macrophages immune phenotype and mitochondrial bioenergetics, cell redox state and endoplasmic reticulum (ER)-mitochondria interaction. Bacterial lipopolysaccharide (LPS) and interferon-γ (IFNγ) pro-inflammatory stimuli decreased oxidative metabolism (basal, phosphorylating and maximal conditions) and increased baseline glycolysis (117%) and glycolytic capacity (43%) in THP-1 macrophages. In contrast, interleukin-4 (IL4) and interleukin-13 (IL13) anti-inflammatory stimuli increased the oxygen consumption rates in baseline conditions (21%) and associated with ATP production (19%). LPS + IFNγ stimuli reduced superoxide anion levels by accelerating its conversion into hydrogen peroxide (H2O2) while IL4+IL13 decreased H2O2 release rates. The source of these oxidants was extra-mitochondrial and associated with increased NOX2 and SOD1 gene expression. LPS + IFNγ stimuli decreased ER-mitochondria contact sites as measured by IP3R1-VDAC1 interaction (34%) and markedly upregulated genes involved in mitochondrial fusion (9-10 fold, MFN1 and 2) and fission (∼7 fold, DRP1 and FIS1). Conversely, IL4+IL13 stimuli did not altered ER-mitochondria interactions nor MFN1 and 2 expression. Together, these results unveil ER-mitochondria interaction pattern as a novel feature of macrophage immunological, metabolic and redox profiles.


Assuntos
Interleucina-13 , Interleucina-4 , Retículo Endoplasmático/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Interferon gama/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo
12.
J Atheroscler Thromb ; 29(6): 825-838, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34092712

RESUMO

AIM: Atherosclerosis is responsible for high morbidity and mortality rates around the world. Local arterial oxidative stress is involved in all phases of atherosclerosis development. Mitochondria is a relevant source of the oxidants, particularly under certain risky conditions, such as hypercholesterolemia. The aim of this study was to test whether lowering the production of mitochondrial oxidants by induction of a mild uncoupling can reduce atherosclerosis in hypercholesterolemic LDL receptor knockout mice. METHODS: The mice were chronically treated with very low doses of DNP (2,4-dinitrophenol) and metabolic, inflammatory and redox state markers and atherosclerotic lesion sizes were determined. RESULTS: The DNP treatment did not change the classical atherosclerotic risk markers, such as plasma lipids, glucose homeostasis, and fat mass, as well as systemic inflammatory markers. However, the DNP treatment diminished the production of mitochondrial oxidants, systemic and tissue oxidative damage markers, peritoneal macrophages and aortic rings oxidants generation. Most importantly, development of spontaneous and diet-induced atherosclerosis (lipid and macrophage content) were significantly decreased in the DNP-treated mice. In vitro, DNP treated peritoneal macrophages showed decreased H2O2 production, increased anti-inflammatory cytokines gene expression and secretion, increased phagocytic activity, and decreased LDL-cholesterol uptake. CONCLUSIONS: These findings are a proof of concept that activation of mild mitochondrial uncoupling is sufficient to delay the development of atherosclerosis under the conditions of hypercholesterolemia and oxidative stress. These results promote future approaches targeting mitochondria for the prevention or treatment of atherosclerosis.


Assuntos
Aterosclerose , Hipercolesterolemia , Animais , Aterosclerose/metabolismo , Humanos , Peróxido de Hidrogênio , Hipercolesterolemia/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Oxidantes/metabolismo
13.
mBio ; 12(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402538

RESUMO

Filamentous fungi of the genus Aspergillus are of particular interest for biotechnological applications due to their natural capacity to secrete carbohydrate-active enzymes (CAZy) that target plant biomass. The presence of easily metabolizable sugars such as glucose, whose concentrations increase during plant biomass hydrolysis, results in the repression of CAZy-encoding genes in a process known as carbon catabolite repression (CCR), which is undesired for the purpose of large-scale enzyme production. To date, the C2H2 transcription factor CreA has been described as the major CC repressor in Aspergillus spp., although little is known about the role of posttranslational modifications in this process. In this work, phosphorylation sites were identified by mass spectrometry on Aspergillus nidulans CreA, and subsequently, the previously identified but uncharacterized site S262, the characterized site S319, and the newly identified sites S268 and T308 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was investigated. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 was not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. All sites were shown to be important for glycogen and trehalose metabolism. This study highlights the importance of CreA phosphorylation sites for the regulation of CCR. These sites are interesting targets for biotechnological strain engineering without the need to delete essential genes, which could result in undesired side effects.IMPORTANCE In filamentous fungi, the transcription factor CreA controls carbohydrate metabolism through the regulation of genes encoding enzymes required for the use of alternative carbon sources. In this work, phosphorylation sites were identified on Aspergillus nidulans CreA, and subsequently, the two newly identified sites S268 and T308, the previously identified but uncharacterized site S262, and the previously characterized site S319 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was characterized. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 is not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. This work characterized novel CreA phosphorylation sites under carbon catabolite-repressing conditions and showed that they are crucial for CreA protein turnover, control of carbohydrate utilization, and biotechnologically relevant enzyme production.


Assuntos
Aspergillus nidulans/metabolismo , Repressão Catabólica/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Aspergillus nidulans/enzimologia , Aspergillus nidulans/genética , Carbono/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/genética
14.
Trends Microbiol ; 29(5): 416-427, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33059975

RESUMO

In certain niches, microbes encounter environmental challenges that are temporally linked. In such cases, microbial fitness is enhanced by the evolution of anticipatory responses where the initial challenge simultaneously activates pre-emptive protection against the second impending challenge. The accumulation of anticipatory responses in domesticated yeasts, which have been termed 'adaptive prediction', has led to the emergence of 'core stress responses' that provide stress cross-protection. Protective anticipatory responses also seem to be common in fungal pathogens of humans. These responses reflect the selective pressures that these fungi have faced relatively recently in their evolutionary history. Consequently, some pathogens have evolved 'core environmental responses' which exploit host signals to trigger immune evasion strategies that protect them against imminent immune attack.


Assuntos
Fungos/imunologia , Fungos/patogenicidade , Evasão da Resposta Imune , Estresse Fisiológico/imunologia , Animais , Fungos/classificação , Interações Hospedeiro-Patógeno , Humanos , Micoses/imunologia , Micoses/microbiologia
15.
mSphere ; 5(5)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938702

RESUMO

The high-osmolarity glycerol (HOG) response pathway is a multifunctional signal transduction pathway that specifically transmits ambient osmotic signals. Saccharomyces cerevisiae Hog1p has two upstream signaling branches, the sensor histidine kinase Sln1p and the receptor Sho1p. The Sho1p branch includes two other proteins, the Msb2p mucin and Opy2p. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Here, we investigated the roles played by A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p putative homologues during the activation of the mitogen-activated protein kinase (MAPK) HOG pathway. The shoA, msbA, and opyA singly and doubly null mutants are important for the cell wall integrity (CWI) pathway, oxidative stress, and virulence as assessed by a Galleria mellonella model. Genetic interactions of ShoA, MsbA, and OpyA are also important for proper activation of the SakAHog1p and MpkASlt2 cascade and the response to osmotic and cell wall stresses. Comparative label-free quantitative proteomics analysis of the singly null mutants with the wild-type strain upon caspofungin exposure indicates that the absence of ShoA, MsbA, and OpyA affects the osmotic stress response, carbohydrate metabolism, and protein degradation. The putative receptor mutants showed altered trehalose and glycogen accumulation, suggesting a role for ShoA, MsbA, and OpyA in sugar storage. Protein kinase A activity was also decreased in these mutants. We also observed genetic interactions between SlnA, ShoA, MsbA, and OpyA, suggesting that both branches are important for activation of the HOG/CWI pathways. Our results help in the understanding of the activation and modulation of the HOG and CWI pathways in this important fungal pathogen.IMPORTANCEAspergillus fumigatus is an important human-pathogenic fungal species that is responsible for a high incidence of infections in immunocompromised individuals. A. fumigatus high-osmolarity glycerol (HOG) and cell wall integrity pathways are important for the adaptation to different forms of environmental adversity such as osmotic and oxidative stresses, nutrient limitations, high temperatures, and other chemical and mechanical stresses that may be produced by the host immune system and antifungal drugs. Little is known about how these pathways are activated in this fungal pathogen. Here, we characterize four A. fumigatus putative homologues that are important for the activation of the yeast HOG pathway. A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p are genetically interacting and are essential for the activation of the HOG and cell wall integrity pathways. Our results contribute to the understanding of A. fumigatus adaptation to the host environment.


Assuntos
Adaptação Fisiológica , Aspergillus fumigatus/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Animais , Aspergillus fumigatus/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Interações Hospedeiro-Patógeno , Larva/microbiologia , Mariposas/microbiologia , Concentração Osmolar , Pressão Osmótica , Proteômica , Virulência
16.
PLoS Genet ; 16(8): e1008996, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32841242

RESUMO

The utilization of different carbon sources in filamentous fungi underlies a complex regulatory network governed by signaling events of different protein kinase pathways, including the high osmolarity glycerol (HOG) and protein kinase A (PKA) pathways. This work unraveled cross-talk events between these pathways in governing the utilization of preferred (glucose) and non-preferred (xylan, xylose) carbon sources in the reference fungus Aspergillus nidulans. An initial screening of a library of 103 non-essential protein kinase (NPK) deletion strains identified several mitogen-activated protein kinases (MAPKs) to be important for carbon catabolite repression (CCR). We selected the MAPKs Ste7, MpkB, and PbsA for further characterization and show that they are pivotal for HOG pathway activation, PKA activity, CCR via regulation of CreA cellular localization and protein accumulation, as well as for hydrolytic enzyme secretion. Protein-protein interaction studies show that Ste7, MpkB, and PbsA are part of the same protein complex that regulates CreA cellular localization in the presence of xylan and that this complex dissociates upon the addition of glucose, thus allowing CCR to proceed. Glycogen synthase kinase (GSK) A was also identified as part of this protein complex and shown to potentially phosphorylate two serine residues of the HOG MAPKK PbsA. This work shows that carbon source utilization is subject to cross-talk regulation by protein kinases of different signaling pathways. Furthermore, this study provides a model where the correct integration of PKA, HOG, and GSK signaling events are required for the utilization of different carbon sources.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Glucose/metabolismo , Quinases da Glicogênio Sintase/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Aspergillus nidulans/enzimologia , Repressão Catabólica/genética , Fungos/genética , Fungos/metabolismo , Glicerol/metabolismo , Concentração Osmolar , Fosforilação/genética , Mapas de Interação de Proteínas/genética , Proteínas Repressoras/genética , Xilose/metabolismo
18.
PLoS Pathog ; 16(7): e1008645, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667960

RESUMO

Aspergillus fumigatus is an opportunistic fungal pathogen that secretes an array of immune-modulatory molecules, including secondary metabolites (SMs), which contribute to enhancing fungal fitness and growth within the mammalian host. Gliotoxin (GT) is a SM that interferes with the function and recruitment of innate immune cells, which are essential for eliminating A. fumigatus during invasive infections. We identified a C6 Zn cluster-type transcription factor (TF), subsequently named RglT, important for A. fumigatus oxidative stress resistance, GT biosynthesis and self-protection. RglT regulates the expression of several gli genes of the GT biosynthetic gene cluster, including the oxidoreductase-encoding gene gliT, by directly binding to their respective promoter regions. Subsequently, RglT was shown to be important for virulence in a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA). Homologues of RglT and GliT are present in eurotiomycete and sordariomycete fungi, including the non-GT-producing fungus A. nidulans, where a conservation of function was described. Phylogenetically informed model testing led to an evolutionary scenario in which the GliT-based resistance mechanism is ancestral and RglT-mediated regulation of GliT occurred subsequently. In conclusion, this work describes the function of a previously uncharacterised TF in oxidative stress resistance, GT biosynthesis and self-protection in both GT-producing and non-producing Aspergillus species.


Assuntos
Aspergilose , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Gliotoxina/biossíntese , Fatores de Transcrição/metabolismo , Animais , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Camundongos , Estresse Oxidativo/fisiologia , Virulência/fisiologia
19.
PLoS Pathog, v. 16 n. 7, e1008645, jul. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3105

RESUMO

Aspergillus fumigatus is an opportunistic fungal pathogen that secretes an array of immune-modulatory molecules, including secondary metabolites (SMs), which contribute to enhancing fungal fitness and growth within the mammalian host. Gliotoxin (GT) is a SM that interferes with the function and recruitment of innate immune cells, which are essential for eliminating A. fumigatus during invasive infections. We identified a C6 Zn cluster-type transcription factor (TF), subsequently named RglT, important for A. fumigatus oxidative stress resistance, GT biosynthesis and self-protection. RglT regulates the expression of several gli genes of the GT biosynthetic gene cluster, including the oxidoreductase-encoding gene gliT, by directly binding to their respective promoter regions. Subsequently, RglT was shown to be important for virulence in a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA). Homologues of RglT and GliT are present in eurotiomycete and sordariomycete fungi, including the non-GT-producing fungus A. nidulans, where a conservation of function was described. Phylogenetically informed model testing led to an evolutionary scenario in which the GliT-based resistance mechanism is ancestral and RglT-mediated regulation of GliT occurred subsequently. In conclusion, this work describes the function of a previously uncharacterised TF in oxidative stress resistance, GT biosynthesis and self-protection in both GT-producing and non-producing Aspergillus species.

20.
Front Microbiol ; 10: 2317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736884

RESUMO

Fungal plant cell wall degradation processes are governed by complex regulatory mechanisms, allowing the organisms to adapt their metabolic program with high specificity to the available substrates. While the uptake of representative plant cell wall mono- and disaccharides is known to induce specific transcriptional and translational responses, the processes related to early signal reception and transduction remain largely unknown. A fast and reversible way of signal transmission are post-translational protein modifications, such as phosphorylations, which could initiate rapid adaptations of the fungal metabolism to a new condition. To elucidate how changes in the initial substrate recognition phase of Neurospora crassa affect the global phosphorylation pattern, phospho-proteomics was performed after a short (2 min) induction period with several plant cell wall-related mono- and disaccharides. The MS/MS-based peptide analysis revealed large-scale substrate-specific protein phosphorylation and de-phosphorylations. Using the proteins identified by MS/MS, a protein-protein-interaction (PPI) network was constructed. The variance in phosphorylation of a large number of kinases, phosphatases and transcription factors indicate the participation of many known signaling pathways, including circadian responses, two-component regulatory systems, MAP kinases as well as the cAMP-dependent and heterotrimeric G-protein pathways. Adenylate cyclase, a key component of the cAMP pathway, was identified as a potential hub for carbon source-specific differential protein interactions. In addition, four phosphorylated F-Box proteins were identified, two of which, Fbx-19 and Fbx-22, were found to be involved in carbon catabolite repression responses. Overall, these results provide unprecedented and detailed insights into a so far less well known stage of the fungal response to environmental cues and allow to better elucidate the molecular mechanisms of sensory perception and signal transduction during plant cell wall degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...