Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 21(24): 245401, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21693943

RESUMO

Phonons at the Γ point and the Raman spectrum of the hexagonal Ge(2)Sb(2)Te(5) were computed within density functional perturbation theory. The three different stackings of the Ge/Sb planes proposed in the experimental literature were considered. The theoretical Raman spectrum is similar for the three stackings with a marginally better agreement with experiments for the structure proposed by Matsunaga et al (2004 Acta Crystallogr. B 60 685) which assumes a disorder in Ge/Sb site occupation. Although the large broadening of the experimental Raman peaks prevents discriminating among the different stackings, the assignment of the Raman peaks to specific phonons is possible because the main features of the spectrum are rather insensitive to the actual distribution of atoms in the Sb/Ge sublattices. On the basis of the energetics (including configurational entropy) two stackings seem plausible candidates for GST, but only the mixed stacking by Matsunaga et al reproduces the spread of Ge/Sb-Te bond lengths measured experimentally.

2.
J Chem Phys ; 120(18): 8761-71, 2004 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-15267808

RESUMO

We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also that absorption and reflection strongly depend on the correct consideration of lattice vibrations and the occurrence of trapping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...