Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Differentiation ; 90(4-5): 77-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26558987

RESUMO

Regeneration of ß-cells in diabetic patients is an important goal of diabetes research. Islet Neogenesis Associated Protein (INGAP) was discovered in the partially duct-obstructed hamster pancreas. Its bioactive fragment, pentadecapeptide 104-118 (INGAP-P), has been shown to reverse diabetes in animal models and to improve glucose homeostasis in patients with diabetes in clinical trials. Further development of INGAP as a therapy for diabetes requires identification of target cells in the pancreas and characterization of the mechanisms of action. We hypothesized that adult human pancreatic ductal cells retain morphogenetic plasticity and can be induced by INGAP to undergo endocrine differentiation. To test this hypothesis, we treated the normal human pancreatic ductal cell line (HPDE) with either INGAP-P or full-length recombinant protein (rINGAP) for short-term periods. Our data show that this single drug treatment induces both proliferation and transdifferentiation of HPDE cells, the latter being characterized by the rapid sequential activation of endocrine developmental transcription factors Pdx-1, Ngn3, NeuroD, IA-1, and MafA and subsequently the expression of insulin at both the mRNA and the protein levels. After 7 days, C-peptide was detected in the supernatant of INGAP-treated cells, reflecting their ability to secrete insulin. The magnitude of differentiation was enhanced by embedding the cells in Matrigel, which led to islet-like cluster formation. The islet-like clusters cells stained positive for nuclear Pdx-1 and Glut 2 proteins, and were expressing Insulin mRNA. These new data suggest that human adult pancreatic ductal cells retain morphogenetic plasticity and demonstrate that a short exposure to INGAP triggers their differentiation into insulin-expressing cells in vitro. In the context of the urgent search for a regenerative and/or cellular therapy for diabetes, these results make INGAP a promising therapeutic candidate.


Assuntos
Antígenos de Neoplasias/farmacologia , Biomarcadores Tumorais/farmacologia , Peptídeo C/metabolismo , Proliferação de Células/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Citocinas/farmacologia , Diabetes Mellitus/terapia , Insulina/metabolismo , Fragmentos de Peptídeos/farmacologia , Fatores de Transcrição/fisiologia , Adulto , Animais , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Linhagem Celular , Colágeno/farmacologia , Cricetinae , Combinação de Medicamentos , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Laminina/farmacologia , Lectinas Tipo C/genética , Ductos Pancreáticos , Proteínas Associadas a Pancreatite , Proteoglicanas/farmacologia , Proteínas Recombinantes/farmacologia
2.
Am J Physiol Endocrinol Metab ; 303(7): E917-27, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22850686

RESUMO

Islet neogenesis-associated protein (INGAP) was discovered in the partially duct-obstructed hamster pancreas as a factor inducing formation of new duct-associated islets. A bioactive portion of INGAP, INGAP(104-118) peptide (INGAP-P), has been shown to have neogenic and insulin-potentiating activity in numerous studies, including recent phase 2 clinical trials that demonstrated improved glucose homeostasis in both type 1 and type 2 diabetic patients. Aiming to improve INGAP-P efficacy and to understand its mechanism of action, we cloned the full-length protein (rINGAP) and compared the signaling events induced by the protein and the peptide in RIN-m5F cells that respond to INGAP with an increase in proliferation. Here, we show that, although both rINGAP and INGAP-P signal via the Ras/Raf/ERK pathway, rINGAP is at least 100 times more efficient on a molar basis than INGAP-P. For either ligand, ERK1/2 activation appears to be pertussis toxin sensitive, suggesting involvement of a G protein-coupled receptor(s). However, there are clear differences between the peptide and the protein in interactions with the cell surface and in the downstream signaling. We demonstrate that fluorescent-labeled rINGAP is characterized by clustering on the membrane and by slow internalization (≤5 h), whereas INGAP-P does not cluster and is internalized within minutes. Signaling by rINGAP appears to involve Src, in contrast to INGAP-P, which appears to activate Akt in addition to the Ras/Raf/ERK1/2 pathway. Thus our data suggest that interactions of INGAP with the cell surface are important to consider for further development of INGAP as a pharmacotherapy for diabetes.


Assuntos
Antígenos de Neoplasias/farmacologia , Biomarcadores Tumorais/farmacologia , Citocinas/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Lectinas Tipo C , Proteínas Associadas a Pancreatite , Toxina Pertussis/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos
3.
J Endocrinol ; 211(3): 231-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21933872

RESUMO

Given the inherent therapeutic potential of the morphogenetic plasticity of adult human islets, the identification of factors controlling their cellular differentiation is of interest. The epidermal growth factor (EGF) family has been identified previously in the context of pancreatic organogenesis. We examined the role of EGF in an in vitro model whereby adult human islets are embedded in a collagen gel and dedifferentiated into duct-like epithelial structures (DLS). We demonstrated that DLS formation was EGF dependent, while residual DLS formation in the absence of added EGF was abrogated by EGF receptor inhibitor treatment. With respect to signaling, EGF administration led to an increase in c-Jun NH2-terminal kinase (JNK) phosphorylation early in DLS formation and in AKT and extracellular signal-regulated kinase (ERK) phosphorylation late in the process of DLS formation, concomitant with the increased proliferation of dedifferentiated cells. In the absence of EGF, these phosphorylation changes are not seen and the typical increase in DLS epithelial cell proliferation seen after 10 days in culture is attenuated. Thus, in our model, EGF is necessary for islet cell dedifferentiation, playing an important role in both the onset of DLS formation (through JNK) and in the proliferation of these dedifferentiated cells (through AKT and ERK).


Assuntos
Desdiferenciação Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Adulto , Sequência de Bases , Desdiferenciação Celular/genética , Desdiferenciação Celular/fisiologia , Primers do DNA/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Expressão Gênica , Humanos , Técnicas In Vitro , Ilhotas Pancreáticas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ligantes , Masculino , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Endocrinology ; 151(4): 1462-72, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20176718

RESUMO

Studies of long-standing type 2 diabetes (T2D) report a deficit in beta-cell mass due to increased apoptosis, whereas neogenesis and replication are unaffected. It is unclear whether these changes are a cause or a consequence of T2D. Moreover, whereas islet morphogenetic plasticity has been demonstrated in vitro, the in situ plasticity of islets, as well as the effect of T2D on endocrine differentiation, is unknown. We compared beta-cell volume, neogenesis, replication, and apoptosis in pancreata from lean and obese (body mass index > or = 27 kg/m(2)) diabetic (5 +/- 2 yr since diagnosis) and nondiabetic cadaveric donors. We also subjected isolated islets from diabetic (3 +/- 1 yr since diagnosis) and nondiabetic donors to an established in vitro model of islet plasticity. Differences in beta-cell volume between diabetic and nondiabetic donors were consistently less pronounced than those reported in long-standing T2D. A compensatory increase in beta-cell neogenesis appeared to mediate this effect. Studies of induced plasticity indicated that islets from diabetic donors were capable of epithelial dedifferentiation but did not demonstrate regenerative potential, as was seen in islets from nondiabetic donors. This deficiency was associated with the overexpression of Notch signaling molecules and a decreased neurogenin-3(+) cell frequency. One interpretation of these results would be that decreased beta-cell volume is a consequence, not a cause, of T2D, mediated by increased apoptosis and attenuated beta-cell (re)generation. However, other explanations are also possible. It remains to be seen whether the morphogenetic plasticity of human islets, deficient in vitro in islets from diabetic donors, is a component of normal beta-cell mass dynamics.


Assuntos
Forma Celular , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/patologia , Pâncreas/patologia , Análise de Variância , Apoptose , Contagem de Células , Proliferação de Células , Tamanho Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Insulina/análise , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Pâncreas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Protein Expr Purif ; 69(1): 1-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19635567

RESUMO

Islet Neogenesis Associated Protein (INGAP) is implicated in pancreatic islet neogenesis. INGAP peptide, a pentadecapeptide comprising amino acids 104-118, reverses diabetes in rodents and improves glucose homeostasis in patients with diabetes. The mechanism of INGAP action is unknown, but such studies would benefit from the availability of the full-length recombinant protein (rINGAP). Here we report the production of rINGAP from 293-SF cells following lentiviral transduction, and its characterization by MALDI-TOF and Q-TOF Mass Spectrometry, and HPLC. Importantly, we show that rINGAP exhibits 100x the bioactivity of INGAP peptide on a molar basis in an in vitro assay of human islet regeneration.


Assuntos
Antígenos de Neoplasias/biossíntese , Biomarcadores Tumorais/biossíntese , Lectinas Tipo C/biossíntese , Proteínas Recombinantes/biossíntese , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/isolamento & purificação , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/isolamento & purificação , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cricetinae , Regulação da Expressão Gênica , Humanos , Ilhotas Pancreáticas/fisiologia , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/isolamento & purificação , Lentivirus/genética , Espectrometria de Massas , Mesocricetus , Dados de Sequência Molecular , Peso Molecular , Proteínas Associadas a Pancreatite , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Regeneração/fisiologia , Frações Subcelulares/metabolismo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...