Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Carbohydr Polym ; 332: 121894, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431407

RESUMO

Interactions between dry cellulose were studied using model systems, cellulose beads, and cellulose films, using custom-built contact adhesion testing equipment. Depending on the configuration of the substrates in contact, Polydimethylsiloxane (PDMS) film, cellulose films spin-coated either on PDMS or glass, the interaction shows three distinct processes. Firstly, molecular interlocking is formed between cellulose and cellulose when there is a soft PDMS thin film backing the cellulose film. Secondly, without backing, no initial attraction force between the surfaces is observed. Thirdly, a significant force increase, ∆F, is observed during the retraction process for cellulose on glass, and there is a maximum in ∆F when the retraction rate is increased. This is due to the kinetics of a contacting process occurring in the interaction zone between the surfaces caused by an interdigitation of a fine fibrillar structure at the nano-scale, whereas, for the spin-coated cellulose surfaces on the PDMS backing, there is a more direct adhesive failure. The results have generated understanding of the interaction between cellulose-rich materials, which helps design new, advanced cellulose-based materials. The results also show the complexity of the interaction between these surfaces and that earlier mechanisms, based on macroscopic material testing, are simply not adequate for molecular tailoring.

2.
ACS Macro Lett ; 12(11): 1530-1535, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37910654

RESUMO

Despite extensive research on biobased and fiber-based materials, fundamental questions regarding the molecular processes governing fiber-fiber interactions remain unanswered. In this study, we introduce a method to examine and clarify molecular interactions within fiber-fiber joints using precisely characterized model materials, i.e., regenerated cellulose gel beads with nanometer-smooth surfaces. By physically modifying these materials and drying them together to create model joints, we can investigate the mechanisms responsible for joining cellulose surfaces and how this affects adhesion in both dry and wet states through precise separation measurements. The findings reveal a subtle balance in the joint formation, influencing the development of nanometer-sized structures at the contact zone and likely inducing built-in stresses in the interphase. This research illustrates how model materials can be tailored to control interactions between cellulose-rich surfaces, laying the groundwork for future high-resolution studies aimed at creating stiff, ductile, and/or tough joints between cellulose surfaces and to allow for the design of high-performance biobased materials.

3.
Biomacromolecules ; 22(10): 4274-4283, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34541856

RESUMO

The nano- to microscale structures at the interface between materials can define the macroscopic material properties. These structures are extremely difficult to investigate for complex material systems, such as cellulose-rich materials. The development of new model cellulose materials and measuring techniques has opened new possibilities to resolve this problem. We present a straightforward approach combining micro-focusing grazing-incidence small-angle X-ray scattering and atomic force microscopy (AFM) to investigate the structural rearrangements of cellulose/cellulose interfaces in situ during drying. Based on the results, we propose that molecular interdiffusion and structural rearrangement play a major role in the development of the properties of the cellulose/cellulose interphase; this model is representative of the development of the properties of joint/contact points between macroscopic cellulose fibers.


Assuntos
Celulose , Incidência , Interfase , Difração de Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...