Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176260

RESUMO

This paper is devoted to the study of the current density distribution effect on plasma electrolytic oxidation process and resultant coatings on a Zr-1Nb alloy. The influence of the distance between the plates simultaneously placed into an electrolyzer was evaluated to assess the throwing power of the PEO process. The current density on the facing surfaces of the plates decreases when the distance between them shrinks. This current density has a notable impact on the resultant PEO coating in terms of the surface morphology parameters and electrochemically evaluated corrosion resistance. The influence of this effect is low on the stages of anodizing and spark discharges (60-120 s of the PEO), and significantly increases on the stage of microarc discharges (120-360 s of the PEO). The coating obtained with a smaller distance between the plates, while having the same coating thickness as the others, exhibits higher wear resistance. New correlations between the current density, diffusion coefficient, time constant of nucleation and the coating thickness in the middle of the facing samples were established; in addition, a correlation of the coating morphology in this area with the roughness parameters RPc, RSm was shown. This study contributes to the development of optimized PEO processes for the simultaneously coated several devices of complex shape, e.g., orthopedic implants.

2.
Materials (Basel) ; 15(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35329459

RESUMO

This work aimed at the development of wear and corrosion resistant oxide coatings for medical implants made of zirconium alloy, by plasma electrolytic oxidation (PEO). The effect of sodium silicate and boric acid addition to calcium acetate electrolyte on the coating properties was studied. Different aspects of the PEO coating were investigated: microstructure, electrochemical and wear behavior, wettability and apatite-forming ability. The resultant coatings consist of a dense inner layer 1.4-2.2 µm thick and a porous outer layer. The total thickness of the coating is 12-20 µm. It was found that the coating contains the tetragonal zirconia (70-95%). The obtained coatings show high corrosion resistance and reduce the surface corrosion current by 1-3 orders of magnitude, depending on the electrolyte additive, compared to the uncoated surface. The addition of boric acid to the electrolyte significantly increases the wear resistance of the coating and reduces the coefficient of friction. In terms of the combination of the coating characteristics, the electrolyte with the addition of the alkali and boric acid is recommended as the most effective.

3.
Materials (Basel) ; 16(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36614501

RESUMO

The effect of slippage during High Pressure Torsion (HPT) of technically pure Ti and pure Cu samples was investigated. The "joint torsion of the disk halves" method was used to evaluate the effect of slippage. It was shown that slippage starts already at the early stages of HPT. With a further increase in the number of revolutions n, the slippage effect increases, and no torsional deformation occurs after n = 5. The slippage effect is explained by analyzing the surface friction forces between the sample and the anvil. However, studies via TEM and XRD have shown that the structure of Ti samples after HPT at the investigated conditions is grinded to a nanocrystalline state. A structure is formed in Ti similar to that observed after HPT by other authors. The dislocation density increases with increasing HPT degree from n = 5 to n = 10 revolutions, despite slippage. Consequently, despite slippage at HPT at n ≥ 5, deformation still occurs. The following assumptions are made to explain the accumulated strain in the sample at HPT. It is assumed that the planes of the upper and lower anvil during HPT are at a slight inclination relative to each other. Computer modeling using the Deform 3D software package has shown that this leads to the accumulations of significant strain during HPT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...