Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Struct Biol ; 86: 102808, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38547555

RESUMO

Serial femtosecond X-ray crystallography has emerged as a powerful method for investigating biomolecular structure and dynamics. With the new generation of X-ray free-electron lasers, which generate ultrabright X-ray pulses at megahertz repetition rates, we can now rapidly probe ultrafast conformational changes and charge movement in biomolecules. Over the last year, another innovation has been the deployment of Frontier, the world's first exascale supercomputer. Synergizing extremely high repetition rate X-ray light sources and exascale computing has the potential to accelerate discovery in biomolecular sciences. Here we outline our perspective on each of these remarkable innovations individually, and the opportunities and challenges in yoking them within an integrated research infrastructure.


Assuntos
Elétrons , Lasers , Cristalografia por Raios X , Raios X
2.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341792

RESUMO

Traditional theories of the nuclear magnetic resonance (NMR) autocorrelation function for intra-molecular dipole pairs assume a single-exponential decay, yet the calculated autocorrelation of realistic systems displays a rich, multi-exponential behavior, resulting in anomalous NMR relaxation dispersion (i.e., frequency dependence). We develop an approach to model and interpret the multi-exponential intra-molecular autocorrelation using simple, physical models within a rigorous statistical mechanical development that encompasses both rotational diffusion and translational diffusion in the same framework. We recast the problem of evaluating the autocorrelation in terms of averaging over a diffusion propagator whose evolution is described by a Fokker-Planck equation. The time-independent part admits an eigenfunction expansion, allowing us to write the propagator as a sum over modes. Each mode has a spatial part that depends on the specified eigenfunction and a temporal part that depends on the corresponding eigenvalue (i.e., correlation time) with a simple, exponential decay. The spatial part is a probability distribution of the dipole pair, analogous to the stationary states of a quantum harmonic oscillator. Drawing inspiration from the idea of inherent structures in liquids, we interpret each of the spatial contributions as a specific molecular mode. These modes can be used to model and predict the NMR dipole-dipole relaxation dispersion of fluids by incorporating phenomena on the molecular level. We validate our statistical mechanical description of the distribution in molecular modes with molecular dynamics simulations interpreted without any relaxation models or adjustable parameters: the most important poles in the Padé-Laplace transform of the simulated autocorrelation agree with the eigenvalues predicted by the theory.

3.
J Chem Theory Comput ; 20(5): 1777-1782, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38382017

RESUMO

Exascale supercomputers have opened the door to dynamic simulations, facilitated by AI/ML techniques, that model biomolecular motions over unprecedented length and time scales. This new capability holds the potential to revolutionize our understanding of fundamental biological processes. Here we report on some of the major advances that were discussed at a recent CECAM workshop in Pisa, Italy, on the topic with a primary focus on atomic-level simulations. First, we highlight examples of current large-scale biomolecular simulations and the future possibilities enabled by crossing the exascale threshold. Next, we discuss challenges to be overcome in optimizing the usage of these powerful resources. Finally, we close by listing several grand challenge problems that could be investigated with this new computer architecture.

4.
J Chem Theory Comput ; 20(1): 368-374, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38156881

RESUMO

In simulations of aqueous systems, it is common to freeze the bond vibration and angle bending modes in water to allow for a longer time step δt for integrating the equations of motion. Thus, δt = 2 fs is often used in simulating rigid models of water. We simulate the SPC/E model of water using δt from 0.5 to 3.0 fs and up to 4 fs using hydrogen mass repartitioning. In these simulations, we find that for all but δt = 0.5 fs, equipartition is not obtained between translational and rotational modes, with the rotational modes exhibiting a lower temperature than the translation modes. To probe the reasons for the lack of equipartition, we study the autocorrelation of the translational velocity of the center of mass and the angular velocity of the rigid water molecule, respectively. We find that the rotational relaxation occurs on a timescale comparable to vibrational periods, calling into question the original motivations for freezing the vibrations. Furthermore, a time step with δt ≥ 1 fs is not able to capture accurately the fast rotational relaxation, which reveals its impact as an effective slowing-down of rotational relaxation. The fluctuation-dissipation relation then leads to the conclusion that the rotational temperature should be cooler for δt greater than the reference value of 0.5 fs. Consideration of fluctuation-dissipation in equilibrium molecular dynamics simulations also emphasizes the need to capture the temporal evolution of fluctuations with fidelity and the role of δt in this regard. The time step also influences the solution thermodynamic properties: both the mean system potential energies and the excess entropy of hydration of a soft repulsive cavity are sensitive to δt.

5.
J Phys Chem Lett ; 14(31): 7020-7026, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37523856

RESUMO

Electrostatic interactions involving proteins depend on not only the ionic charges involved but also their chemical identities. Here we examine the origins of incompletely understood differences in the strength of association of different pairs of monovalent molecular ions that are relevant to protein-protein and protein-ligand interactions. Cationic analogues of the basic amino acid side chains are simulated, along with oxyanionic analogues of cation-exchange ligands and acidic amino acids. Experimentally observed association trends with respect to the cations, but not anions, are captured by a nonpolarizable model. An effective continuum correction to account for electronic polarizability can capture both trends better but at the expense of fidelity to the underlying free energy landscape for ion-pair association. A polarizable model proves decisive in capturing experimentally suggested trends with respect to both cations and anions; critically, the free energy landscape for ion-pair association is itself altered, thus altering configurational sampling.

6.
ACS Macro Lett ; 12(2): 195-200, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36695540

RESUMO

We investigate the effect of charge block length on polyampholyte chain conformation and phase behavior using small-angle X-ray scattering (SAXS) and implicit-solvent molecular simulations. To this end, we use solid phase peptide synthesis to precision-tailor a series of polyampholytes consisting of l-glutamic acid (E) and l-lysine (K) monomers arranged in alternating blocks from 2 to 16 monomers. We observe that the polyampholytes tend to phase separate as block size increases. With addition of NaCl, phase separated polyampholytes exhibit a salting-in effect dependent on charge block length. Fourier-transform infrared (FTIR) spectroscopy reveals the presence of intramolecular hydrogen bonds that are disrupted upon the addition of NaCl, implicating both electrostatic interactions and hydrogen bonding in the phase behavior. SAXS spectra at no-added salt conditions show minimal dependence of charge block length on the radius of gyration (Rg) for soluble polyampholytes, but local chain stiffening is found to be dependent on charge block length. With increasing NaCl, consistent with electrostatic screening, all polyampholytes expand and behave as neutral or swollen chains in good solvent conditions. Molecular simulations are qualitatively consistent with experiments. Implications for understanding intracellular condensates and material design are noted.

7.
J Phys Chem B ; 126(46): 9607-9616, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36354351

RESUMO

Calculating the hydration free energy of a macromolecule in all-atom simulations has long remained a challenge, necessitating the use of models wherein the effect of the solvent is captured without explicit account of solvent degrees of freedom. This situation has changed with developments in the molecular quasi-chemical theory (QCT)─an approach that enables calculation of the hydration free energy of macromolecules within all-atom simulations at the same resolution as is possible for small molecular solutes. The theory also provides a rigorous and physically transparent framework to conceptualize and model interactions in molecular solutions and thus provides a convenient framework to investigate the assumptions in implicit solvent models. In this study, we compare the results using molecular QCT versus predictions from EEF1, ABSINTH, and GB/SA implicit solvent models for polyglycine and polyalanine solutes covering a range of chain lengths and conformations. The hydration free energies or the differences in hydration free energies between conformers obtained from the implicit solvent models do not agree with explicit solvent results, with the deviations being largest for the group additive EEF1 and ABSINTH models. GB/SA does better in capturing the qualitative trends seen in explicit solvent results. Analysis founded on QCT reveals the critical importance of the cooperativity of hydration that is inherent in the hydrophilic and hydrophobic contributions to hydration─physics that is not well captured in additive models but somewhat better accounted for by means of a dielectric in the GB/SA approach.


Assuntos
Peptídeos , Água , Solventes/química , Termodinâmica , Entropia , Simulação por Computador , Soluções , Água/química
8.
Acc Chem Res ; 55(16): 2201-2212, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35829622

RESUMO

The interactions of hydrated ions with molecular and macromolecular solution and interface partners are strong on a chemical energy scale. Here, we recount the foremost ab initio theory for the evaluation of the hydration free energies of ions, namely, quasi-chemical theory (QCT). We focus on anions, particularly halides but also the hydroxide anion, because they have been outstanding challenges for all theories. For example, this work supports understanding the high selectivity for F- over Cl- in fluoride-selective ion channels despite the identical charge and the size similarity of these ions. QCT is built by the identification of inner-shell clusters, separate treatment of those clusters, and then the integration of those results into the broader-scale solution environment. Recent work has focused on a close comparison with mass-spectrometric measurements of ion-hydration equilibria. We delineate how ab initio molecular dynamics (AIMD) calculations on ion-hydration clusters, elementary statistical thermodynamics, and electronic structure calculations on cluster structures sampled from the AIMD calculations obtain just the free energies extracted from the cluster experiments. That theory-experiment comparison has not been attempted before the work discussed here, but the agreement is excellent with moderate computational effort. This agreement reinforces both theory and experiment and provides a numerically accurate inner-shell contribution to QCT. The inner-shell complexes involving heavier halides display strikingly asymmetric hydration clusters. Asymmetric hydration structures can be problematic for the evaluation of the QCT outer-shell contribution with the polarizable continuum model (PCM). Nevertheless, QCT provides a favorable setting for the exploitation of PCM when the inner-shell material shields the ion from the outer solution environment. For the more asymmetrically hydrated, and thus less effectively shielded, heavier halide ions clustered with waters, the PCM is less satisfactory. We therefore investigate an inverse procedure in which the inner-shell structures are sampled from readily available AIMD calculations on the bulk solutions. This inverse procedure is a remarkable improvement; our final results are in close agreement with a standard tabulation of hydration free energies, and the final composite results are independent of the coordination number on the chemical energy scale of relevance, as they should be. Finally, a comparison of anion hydration structure in clusters and bulk solutions from AIMD simulations emphasize some differences: the asymmetries of bulk solution inner-shell structures are moderated compared with clusters but are still present, and inner hydration shells fill to slightly higher average coordination numbers in bulk solution than in clusters.


Assuntos
Simulação de Dinâmica Molecular , Água , Termodinâmica , Água/química
10.
J Phys Chem B ; 125(30): 8294-8304, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34313434

RESUMO

The quasichemical organization of the potential distribution theorem, molecular quasichemical theory (QCT), enables practical calculations and also provides a conceptual framework for molecular hydration phenomena. QCT can be viewed from multiple perspectives: (a) as a way to regularize an ill-conditioned statistical thermodynamic problem; (b) as an introduction of and emphasis on the neighborship characteristics of a solute of interest; or (c) as a way to include accurate electronic structure descriptions of near-neighbor interactions in defensible statistical thermodynamics by clearly defining neighborship clusters. The theory has been applied to solutes of a wide range of chemical complexity, ranging from ions that interact with water with both long-ranged and chemically intricate short-ranged interactions, to solutes that interact with water solely through traditional van der Waals interations, and including water itself. The solutes range in variety from monatomic ions to chemically heterogeneous macromolecules. A notable feature of QCT is that, in applying the theory to this range of solutes, the theory itself provides guidance on the necessary approximations and simplifications that can facilitate the calculations. In this Perspective, we develop these ideas and document them with examples that reveal the insights that can be extracted using the QCT formulation.


Assuntos
Água , Íons , Soluções , Termodinâmica
11.
J Phys Chem Lett ; 11(22): 9965-9970, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33170720

RESUMO

We address the association of the hydrophobic driving forces in protein folding with the inverse temperature dependence of protein hydration, wherein stabilizing hydration effects strengthen with increasing temperature in a physiological range. All-atom calculations of the free energy of hydration of aqueous deca-alanine conformers, holistically including backbone and side-chain interactions together, show that attractive peptide-solvent interactions and the thermal expansion of the solvent dominate the inverse temperature signatures that have been interpreted traditionally as the hydrophobic stabilization of proteins in aqueous solution. Equivalent calculations on a methane solute are also presented as a benchmark for comparison. The present study calls for a reassessment of the forces that stabilize folded protein conformations in aqueous solutions and of the additivity of hydrophobic/hydrophilic contributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...