Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(11): 4785-4792, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37220025

RESUMO

While the performance of metal halide perovskite light-emitting diodes (PeLEDs) has rapidly improved in recent years, their stability remains a bottleneck to commercial realization. Here, we show that the thermal stability of polymer hole-transport layers (HTLs) used in PeLEDs represents an important factor influencing the external quantum efficiency (EQE) roll-off and device lifetime. We demonstrate a reduced EQE roll-off, a higher breakdown current density of approximately 6 A cm-2, a maximum radiance of 760 W sr-1 m-2, and a longer device lifetime for PeLEDs using polymer HTLs with high glass-transition temperatures. Furthermore, for devices driven by nanosecond electrical pulses, a record high radiance of 1.23 MW sr-1 m-2 and an EQE of approximately 1.92% at 14.6 kA cm-2 are achieved. Thermally stable polymer HTLs enable stable operation of PeLEDs that can sustain more than 11.7 million electrical pulses at 1 kA cm-2 before device failure.

2.
J Am Chem Soc ; 145(21): 11846-11858, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37202123

RESUMO

Metal halide perovskites are promising for optoelectronic device applications; however, their poor stability under solar illumination remains a primary concern. While the intrinsic photostability of isolated neat perovskite samples has been widely discussed, it is important to explore how charge transport layers─employed in most devices─impact photostability. Herein, we study the effect of organic hole transport layers (HTLs) on light-induced halide segregation and photoluminescence (PL) quenching at perovskite/organic HTL interfaces. By employing a series of organic HTLs, we demonstrate that the HTL's highest occupied molecular orbital energy dictates behavior; furthermore, we reveal the key role of halogen loss from the perovskite and subsequent permeation into organic HTLs, where it acts as a PL quencher at the interface and introduces additional mass transport pathways to facilitate halide phase separation. In doing so, we both reveal the microscopic mechanism of non-radiative recombination at perovskite/organic HTL interfaces and detail the chemical rationale for closely matching the perovskite/organic HTL energetics to maximize solar cell efficiency and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...