Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(8): 1545-1569, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485816

RESUMO

Adaptation to chronic hypoxia occurs through changes in protein expression, which are controlled by hypoxia-inducible factor 1α (HIF1α) and are necessary for cancer cell survival. However, the mechanisms that enable cancer cells to adapt in early hypoxia, before the HIF1α-mediated transcription programme is fully established, remain poorly understood. Here we show in human breast cancer cells, that within 3 h of hypoxia exposure, glycolytic flux increases in a HIF1α-independent manner but is limited by NAD+ availability. Glycolytic ATP maintenance and cell survival in early hypoxia rely on reserve lactate dehydrogenase A capacity as well as the activity of glutamate-oxoglutarate transaminase 1 (GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-derived NAD+. In addition, GOT1 maintains low α-ketoglutarate levels, thereby limiting prolyl hydroxylase activity to promote HIF1α stabilisation in early hypoxia and enable robust HIF1α target gene expression in later hypoxia. Our findings reveal that, in normoxia, multiple enzyme systems maintain cells in a primed state ready to support increased glycolysis and HIF1α stabilisation upon oxygen limitation, until other adaptive processes that require more time are fully established.


Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias , Humanos , Sobrevivência Celular , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , NAD
2.
J Cell Physiol ; 235(11): 8757-8767, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32324259

RESUMO

Metabolic reprogramming of cancer cells results in a high production of acidic substances that must be extruded to maintain tumor-cell viability. The voltage-gated proton channel (Hv1) mediates highly selective effluxes of hydronium-ion (H+ ) that prevent deleterious cytoplasmic acidification. In the work described here, we demonstrated for the first time that the amino-terminal-truncated isoform of Hv1 is more highly expressed in tumorigenic breast-cancer-cell lines than in nontumorigenic breast cells. With respect to Hv1 function, we observed that pharmacologic inhibition of that channel, mediated by the specific blocker 5-chloro-2-guanidinobenzimidazole, produced a drop in intracellular pH and a decrease in cell viability, both in monolayer and in three-dimensional cultures, and adversely affected the cell-cycle in tumorigenic breast cells without altering the cycling of nontumorigenic cells. In conclusion, our results demonstrated that the Hv1 channel could be a potential tool both as a biomarker and as a therapeutic target in breast-cancer disease.


Assuntos
Neoplasias da Mama/metabolismo , Sobrevivência Celular/fisiologia , Canais Iônicos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Isoformas de Proteínas/metabolismo
3.
Chemosphere ; 195: 576-584, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29277037

RESUMO

Hexachlorobenzene (HCB) is a dioxin-like environmental pollutant, widely distributed in the environment. New research links exposure to high levels of persistent organic environmental toxicants to cardiovascular disease, however little is known about the effect of HCB on vascular function and on blood pressure. The purpose of the present study was to evaluate biochemical and cardiovascular changes resulting from subchronic HCB exposure. Adult female Sprague-Dawley rats were treated with vehicle or HCB (5 or 500 mg/kg b.w) for 45 days. Systolic blood pressure (BP), recorded by tail cuff plethysmography, was significantly increased at 35, 40 and 45 days of 500 mg/kg HCB-treatment. HCB (500 mg/kg) increased arterial thickness, while both 5 and 500 mg/kg HCB decreased proliferating cell nuclear antigen (PCNA) protein levels and cellular nuclei in abdominal aortas indicating a hypertrophic process. Also, aortas from both groups of HCB-treated rats presented higher sensitivity to noradrenalin (NA) and a significant decrease in maximum contractile response. Arteries from 500 mg/kg HCB-treated rats showed a significant increase in the levels of transforming growth factor-ß1 (TGF-ß1) mRNA and angiotensin II type1 receptor (AT1), and a significant decrease in estrogen receptor alpha (ERα), endothelial nitric oxidide synthase (eNOS) protein expression and deiodinase II (DII) mRNA levels. In conclusion, we have demonstrated for the first time that subchronic HCB administration significantly increases BP and alters associated cardiovascular parameters in rats. In addition, HCB alters the expression of key vascular tissue molecules involved in BP regulation, such as TGF-ß1, AT1, ERα, eNOS and DII.


Assuntos
Hexaclorobenzeno/toxicidade , Hipertensão/induzido quimicamente , Animais , Artérias/química , Poluentes Ambientais/toxicidade , Receptor alfa de Estrogênio/metabolismo , Feminino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/genética
4.
Channels (Austin) ; 12(1): 58-64, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28514187

RESUMO

An established characteristic of neoplastic cells is their metabolic reprogramming, known as the Warburg effect, with greater reliance on energetically less efficient pathways (such as glycolysis and pentose phosphate shunt) compared with oxidative phosphorylation. This results in an overproduction of acidic species that must be extruded to maintain intracellular homeostasis. We recently described that blocking the proton currents in leukemic cells mediated by Hv1 ion channels triggers a marked intracellular acidification and apoptosis induction. Moreover, histamine H1-receptor antagonists were found to induce apoptosis in tumoral cells but the mechanism is still unclear. By using Jurkat T cells, we now show how diphenhydramine inhibits Hv1 mediated currents, inducing a drop in intracellular pH and cellular viability. This provides evidence of a new target structure responsible of the known pro-apoptotic action of antihistaminic drugs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Difenidramina/farmacologia , Canais Iônicos/antagonistas & inibidores , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Difenidramina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Canais Iônicos/metabolismo , Células Jurkat , Relação Estrutura-Atividade
5.
Pflugers Arch ; 469(2): 251-261, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28013412

RESUMO

Cellular energetic deregulation is widely known to produce an overproduction of acidic species in cancer cells. This acid overload must be counterbalanced with a high rate of H+ extrusion to maintain cell viability. In this sense, many H+ transporters have been reported to be crucial for cell survival and proposed as antineoplastic target. By the way, voltage-gated proton channels (Hv1) mediate highly selective H+ outward currents, capable to compensate acid burden in brief periods of time. This structure is canonically described acting as NADPH oxidase counterbalance in reactive oxygen species production. In this work, we show, for the first time in a oncohematologic cell line, that inhibition of Hv1 channels by Zn2+ and the more selective blocker 2-(6-chloro-1H-benzimidazol-2-yl)guanidine (ClGBI) progressively decreases intracellular pH in resting conditions. This acidification is evident minutes after blockade and progresses under prolonged exposure (2, 17, and 48 h), and we firstly demonstrate that this is followed by cell death through apoptosis (annexin V binding). Altogether, these results contribute strong evidence that this channel might be a new therapeutic target in cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Canais Iônicos/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/metabolismo , Células Jurkat , NADPH Oxidases/metabolismo , Prótons , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/metabolismo , Zinco/farmacologia
6.
Pflugers Arch ; 467(8): 1711-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25208915

RESUMO

Phenotypic modulation (PM) of vascular smooth muscle cells (VSMCs) is central to the process of intimal hyperplasia which constitutes a common pathological lesion in occlusive vascular diseases. Changes in the functional expression of Kv1.5 and Kv1.3 currents upon PM in mice VSMCs have been found to contribute to cell migration and proliferation. Using human VSMCs from vessels in which unwanted remodeling is a relevant clinical complication, we explored the contribution of the Kv1.5 to Kv1.3 switch to PM. Changes in the expression and the functional contribution of Kv1.3 and Kv1.5 channels were studied in contractile and proliferating VSMCs obtained from human donors. Both a Kv1.5 to Kv1.3 switch upon PM and an anti-proliferative effect of Kv1.3 blockers on PDGF-induced proliferation were observed in all vascular beds studied. When investigating the signaling pathways modulated by the blockade of Kv1.3 channels, we found that anti-proliferative effects of Kv1.3 blockers on human coronary artery VSMCs were occluded by selective inhibition of MEK/ERK and PLCγ signaling pathways, but were unaffected upon blockade of PI3K/mTOR pathway. The temporal course of the anti-proliferative effects of Kv1.3 blockers indicates that they have a role in the late signaling events essential for the mitogenic response to growth factors. These findings establish the involvement of Kv1.3 channels in the PM of human VSMCs. Moreover, as current therapies to prevent restenosis rely on mTOR blockers, our results provide the basis for the development of novel, more specific therapies.


Assuntos
Proliferação de Células , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Potenciais da Membrana , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , Inibidores de Fosfodiesterase/farmacologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Tempo
7.
Pflugers Arch ; 466(9): 1779-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24375290

RESUMO

Arachidonic acid (AA) is a polyunsaturated fatty acid involved in a complex network of cell signaling. It is well known that this fatty acid can directly modulate several cellular target structures, among them, ion channels. We explored the effects of AA on high conductance Ca(2+)- and voltage-dependent K(+) channel (BKCa) in vascular smooth muscle cells (VSMCs) where the presence of ß1-subunit was functionally demonstrated by lithocholic acid activation. Using patch-clamp technique, we show at the single channel level that 10 µM AA increases the open probability (Po) of BKCa channels tenfold, mainly by a reduction of closed dwell times. AA also induces a left-shift in Po versus voltage curves without modifying their steepness. Furthermore, AA accelerates the kinetics of the voltage channel activation by a fourfold reduction in latencies to first channel opening. When AA was tested on BKCa channel expressed in HEK cells with or without the ß1-subunit, activation only occurs in presence of the modulatory subunit. These results contribute to highlight the molecular mechanism of AA-dependent BKCa activation. We conclude that AA itself selectively activates the ß1-associated BKCa channel, destabilizing its closed state probably by interacting with the ß1-subunit, without modifying the channel voltage sensitivity. Since BKCa channels physiologically contribute to regulation of VSMCs contractility and blood pressure, we used the whole-cell configuration to show that AA is able to activate these channels, inducing significant cell hyperpolarization that can lead to VSMCs relaxation.


Assuntos
Ácido Araquidônico/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ácido Araquidônico/farmacologia , Células HEK293 , Humanos , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...