Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 59(12): 1880-1902, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29370540

RESUMO

Microalgae are rich source of various bioactive molecules such as carotenoids, lipids, fatty acids, hydrocarbons, proteins, carbohydrates, amino acids, etc. and in recent Years carotenoids from algae gained commercial recognition in the global market for food and cosmeceutical applications. However, the production of carotenoids from algae is not yet fully cost effective to compete with synthetic ones. In this context the present review examines the technologies/methods in relation to mass production of algae, cell harvesting for extraction of carotenoids, optimizing extraction methods etc. Research studies from different microalgal species such as Spirulina platensis, Haematococcus pluvialis, Dunaliella salina, Chlorella sps., Nannochloropsis sps., Scenedesmus sps., Chlorococcum sps., Botryococcus braunii and Diatoms in relation to carotenoid content, chemical structure, extraction and processing of carotenoids are discussed. Further these carotenoid pigments, are useful in various health applications and their use in food, feed, nutraceutical, pharmaceutical and cosmeceutical industries was briefly touched upon. The commercial value of algal carotenoids has also been discussed in this review. Possible recommendations for future research studies are proposed.


Assuntos
Carotenoides/metabolismo , Microalgas/metabolismo , Biotecnologia , Chlorella , Clorófitas/metabolismo , Cianobactérias/metabolismo , Diatomáceas/metabolismo , Fotobiorreatores/tendências , Scenedesmus/metabolismo
2.
Mar Drugs ; 12(1): 128-52, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24402174

RESUMO

There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3'-dihydroxy-ß, ß'-carotene-4,4'-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.


Assuntos
Animais , Anti-Inflamatórios , Antineoplásicos , Antioxidantes , Disponibilidade Biológica , Produtos Biológicos/química , Biotecnologia , Fármacos Cardiovasculares , Estabilidade de Medicamentos , Humanos , Hipoglicemiantes , Fatores Imunológicos , Biologia Marinha , Xantofilas/efeitos adversos , Xantofilas/biossíntese , Xantofilas/química , Xantofilas/isolamento & purificação , Xantofilas/farmacocinética , Xantofilas/farmacologia
3.
Electron. j. biotechnol ; 9(4)July 2006. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-451655

RESUMO

The phytopathogenic bacteria Agrobacterium rhizogenes genetically transforms plants by transferring a portion of the resident Ri plasmid, the T-DNA to the plant. Plant species differ in their temporal competence for transformation. But various physical and chemical methods are found to enhance transformation frequency. Agrobacterium rhizogenes mediated transformation efficiency was assessed under the influence of sonication, calcium treatment, acetosyringone and macerating enzymes in suitable combinations in Nicotiana tabacum as a model system. Manual wounding resulted in 21 percent transformation frequency. Where as sonication resulted in 2.2 fold increase, followed by sonication with CaCl2 treatment resulted in 2.5 fold increase and sonication with acetosyringone treatment resulted in 4.1 fold increase in transformation frequency. However, sonication with macerating enzyme treatment resulted in 1.5 to 5.25-fold decrease in transformation frequency. Micro wounding through sonication followed by acetosyringone treatment enhanced transformation frequency substantially. The results of this study may be very useful in genetic manipulation of plants by Agrobacterium rhizogenes mediated gene delivery to higher plants, which are recalcitrant to A. tumefaciens mediated genetic manipulation.

4.
Electron. j. biotechnol ; 8(2): 66-78, Aug. 2005. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640476

RESUMO

The genetically transformed roots of red beet have been shown, for the first time, to produce very high levels of peroxidase (POD; EC 1.11.1.7) accounting for 1.21 x 10(6) Units L-1. Of the ten clones established using different strains of Agrobacterium rhizogenes, one was that from the strain LMG-150, three each from A 2/83, A 20/83 and A4. All the clones showed true integration of T-DNA when tested by PCR and Southern hybridization methods. Each clone differed significantly from the others in growth, hormone dependency and POD production where LMG-150 produced highest biomass (140 g FW L-1) as well as POD (ranging from 8000-9000 U g-1 FW and 1.18 x 10(6) U L-1 with a specific activity of 600 U mg-1 protein) on hormone-free medium, both in shake-flask as well as in bioreactor with a further enhancement to 1.21 x 10(6) U L-1 upon the addition of extra calcium chloride (5 mM). PAGE with active staining showed 4 distinct bands of Rm 0.06, 0.16, 0.25, 0.38 and 0.46 in the biomass and bands at Rm 0.06, 0.16, 0.25 and one extra band of Rm 0.575 in the spent medium where isozymes of Rm 0.38 and 0.46 were totally absent. The pH optima and other properties were grossly comparable with the standard horse-radish POD (HRP) with better thermal stability than HRP and therefore, the present source appears to offer a cheaper and additional alternative for the commercial production of POD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...