Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Open J Eng Med Biol ; 5: 296-305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766540

RESUMO

Goal: Clinical interpretation of an electrocardiogram (ECG) can be detrimentally affected by noise. Removal of the electromyographic (EMG) noise is particularly challenging due to its spectral overlap with the QRS complex. The existing EMG-denoising algorithms often distort signal morphology, thus obscuring diagnostically relevant information. Methods: Here, a new iterative regeneration method (IRM) for efficient EMG-noise suppression is proposed. The main hypothesis is that the temporary removal of the dominant ECG components enables extraction of the noise with the minimum alteration to the signal. The method is validated on SimEMG database of simultaneously recorded reference and noisy signals, MIT-BIH arrhythmia database and synthesized ECG signals, both with the noise from MIT Noise Stress Test Database. Results: IRM denoising and morphology-preserving performance is superior to the wavelet- and FIR-based benchmark methods. Conclusions: IRM is reliable, computationally non-intensive, fast and applicable to any number of ECG channels recorded by mobile or standard ECG devices.

2.
IEEE Open J Eng Med Biol ; 4: 222-225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059067

RESUMO

Goal: Noise on recorded electrocardiographic (ECG) signals may affect their clinical interpretation. Electromyographic (EMG) noise spectrally coincides with the QRS complex, which makes its removal particularly challenging. The problem of evaluating the noise-removal techniques has commonly been approached by algorithm testing on the contaminated ECG signals constructed ad hoc as an additive mixture of a noise-free ECG signal and noise. Consequently, there is an absence of a unique/standard database for testing and comparing different denoising methods. We present a SimEMG database recorded by a novel acquisition method that allows for direct recording of the genuine EMG-noise-free and -contaminated ECG signals. The database is available as open source.

3.
JACC Adv ; 2(6): 100454, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38939446

RESUMO

Background: Early coronary occlusion detection by portable personal device with limited number of electrocardiographic (ECG) leads might shorten symptom-to-balloon time in acute coronary syndromes. Objectives: The purpose of this study was to compare the accuracy of coronary occlusion detection using vectorcardgiographic analysis of a near-orthogonal 3-lead ECG configuration suitable for credit card-size personal device integration with automated and human 12 lead ECG interpretation. Methods: The 12-lead ECGs with 3 additional leads ("abc") using 2 arm and 2 left parasternal electrodes were recorded in 66 patients undergoing percutaneous coronary intervention prior to ("baseline", n = 66), immediately before ("preinflation", n = 66), and after 90-second balloon coronary occlusion ("inflation", n = 120). Performance of computer-measured ST-segment shift on vectorcardgiographic loops constructed from "abc" and 12 leads, standard 12-lead ECG, and consensus human interpretation in coronary occlusion detection were compared in "comparative" and "spot" modes (with/without reference to "baseline") using areas under ROC curves (AUC), reliability, and sensitivity/specificity analysis. Results: Comparative "abc"-derived ST-segment shift was similar to two 12-lead methods (vector/traditional) in detecting balloon coronary occlusion (AUC = 0.95, 0.96, and 0.97, respectively, P = NS). Spot "abc" and 12-lead measurements (AUC = 0.72, 0.77, 0.68, respectively, P = NS) demonstrated poorer performance (P < 0.01 vs comparative measurements). Reliability analysis demonstrated comparative automated measurements in "good" agreement with reference (preinflation/inflation), while comparative human interpretation was in "moderate" range. Spot automated and human reading showed "poor" agreement. Conclusions: Vectorcardiographic ST-segment analysis using baseline comparison of 3-lead ECG system suitable for credit card-size personal device integration is similar to established 12-lead ECG methods in detecting balloon coronary occlusion.

4.
Biomed Tech (Berl) ; 65(4): 405-415, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32238599

RESUMO

Wearable smart monitors (WSMs) applied for the estimation of electrophysiological signals are of utmost interest for a non-stressed life. WSM which records heart muscle activities could signalize timely a life-threatening event. The heart muscle activities are typically recorded across the heart at the surface of the body; hence, a WSM monitor requires high-quality surface electrodes. The electrodes used in the clinical settings [i.e. silver/silver chloride (Ag/AgCl) with the gel] are not practical for the daily out of clinic usage. A practical WSM requires the application of a dry electrode with stable and reproducible electrical characteristics. We compared the characteristics of six types of dry electrodes and one gelled electrode during short-term recordings sessions (≈30 s) in real-life conditions: Orbital, monolithic polymer plated with Ag/AgCl, and five rectangular shaped 10 × 6 × 2 mm electrodes (Orbital, Ag electrode, Ag/AgCl electrode, gold electrode and stainless-steel AISI304). The results of a well-controlled analysis which considered motion artifacts, line noise and junction potentials suggest that among the dry electrodes Ag/AgCl performs the best. The Ag/AgCl electrode is in average three times better compared with the stainless-steel electrode often used in WSMs.


Assuntos
Eletrocardiografia/métodos , Compostos de Prata/química , Artefatos , Eletrodos , Desenho de Equipamento/instrumentação , Humanos , Monitorização Fisiológica , Aço Inoxidável , Dispositivos Eletrônicos Vestíveis
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1780-1783, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946242

RESUMO

Atrial fibrillation (AF) and atrial flutter (AFL) represent atrial arrhythmias closely related to increasing risk for embolic stroke, and therefore being in the focus of cardiologists. While the reported methods for AF detection exhibit high performances, little attention has been given to distinguishing these two arrhythmias. In this study, we propose a deep neural network architecture, which combines convolutional and recurrent neural networks, for extracting features from sequence of RR intervals. The learned features were used to classify a long term ECG signals as AF, AFL or sinus rhythm (SR). A 10-fold cross-validation strategy was used for choosing an architecture design and tuning model hyperparameters. Accuracy of 88.28 %, with the sensitivities of 93.83%, 83.60% and 83.83% for SR, AF and AFL, respectively, was achieved. After choosing optimal network structure, the model was trained on the entire training set and finally evaluated on the blindfold test set which resulted in 89.67% accuracy, and 97.20%, 94.20%, and 77.78% sensitivity for SR, AF and AFL, respectively. Promising performances of the proposed model encourage continuing development of highly specific AF and AFL detection procedure based on deep learning. Distinction between these two arrhythmias can make therapy more efficient and decrease the recovery time to normal heart rhythm.


Assuntos
Fibrilação Atrial , Flutter Atrial , Aprendizado Profundo , Eletrocardiografia , Fibrilação Atrial/diagnóstico , Flutter Atrial/diagnóstico , Eletrocardiografia/estatística & dados numéricos , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...