Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem C Mater ; 10(32): 11703-11709, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36090965

RESUMO

We report on the discovery, structural analysis, and the physical properties of Nb4SiSb2 - a hitherto unknown compound crystallizing in the V4SiSb2-type structure with the tetragonal space group I4/mcm and unit cell parameters a = 10.3638(2) Å and c = 4.9151(2) Å. We find Nb4SiSb2 to be a metal undergoing a transition to a superconducting state at a critical temperature of T c ≈ 1.6 K. The bulk nature of the superconductivity in this material is confirmed by the observation of a well defined discontinuity in specific heat with a normalized specific heat jump of ΔC(T c)/γT c = 1.33 mJ mol-1 K-2. We find that for Nb4SiSb2, the unoccupied sites on the 4b Wyckoff position can be partially occupied with Cu, Pd, or Pt. Low-temperature resistivity measurements show transitions to superconductivity for all three compounds at T c ≈ 1.2 K for Nb4Cu0.2SiSb2, and T c ≈ 0.8 K for Nb4Pd0.2SiSb2 as well as for Nb4Pt0.14SiSb2. The addition of electron-donor atoms into these void positions, henceforth, lowers the superconducting transition temperature in comparison to the parent compound.

2.
Nat Commun ; 11(1): 3056, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546839

RESUMO

A state of matter with a multi-component order parameter can give rise to vestigial order. In the vestigial phase, the primary order is only partially melted, leaving a remaining symmetry breaking behind, an effect driven by strong classical or quantum fluctuations. Vestigial states due to primary spin and charge-density-wave order have been discussed in iron-based and cuprate materials. Here we present the observation of a partially melted superconductivity in which pairing fluctuations condense at a separate phase transition and form a nematic state with broken Z3, i.e., three-state Potts-model symmetry. Thermal expansion, specific heat and magnetization measurements of the doped topological insulators NbxBi2Se3 and CuxBi2Se3 reveal that this symmetry breaking occurs at [Formula: see text] above [Formula: see text], along with an onset of superconducting fluctuations. Thus, before Cooper pairs establish long-range coherence at Tc, they fluctuate in a way that breaks the rotational invariance at Tnem and induces a crystalline distortion.

3.
Proc Natl Acad Sci U S A ; 117(1): 238-242, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852824

RESUMO

With the recent discovery of the quantum anomalous Hall insulator (QAHI), which exhibits the conductive quantum Hall edge states without external magnetic field, it becomes possible to create a topological superconductor (SC) by introducing superconductivity into these edge states. In this case, 2 distinct topological superconducting phases with 1 or 2 chiral Majorana edge modes were theoretically predicted, characterized by Chern numbers (N) of 1 and 2, respectively. We present spectroscopic evidence from Andreev reflection experiments for the presence of chiral Majorana modes in an Nb/(Cr0.12Bi0.26Sb0.62)2Te3 heterostructure with distinct signatures attributed to 2 different topological superconducting phases. The results are in qualitatively good agreement with the theoretical predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...