Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
IEEE Trans Haptics ; PP2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008387

RESUMO

The movement-related cortical potential (MRCP) is a low-frequency component of the electroencephalography (EEG) signal that originates from the motor cortex and surrounding cortical regions. As the MRCP reflects both the intention and execution of motor control, it has the potential to serve as a communication interface between patients and neurorehabilitation robots. In this study, we investigated the EEG signal recorded centered at the Cz electrode with the aim of decoding four rates of force development (RFD) during isometric contractions of the tibialis anterior muscle. The four levels of RFD were defined with respect to the maximum voluntary contraction (MVC) of the muscle as follows: Slow (20% MVC/s), Medium (30% MVC/s), Fast (60% MVC/s), and Ballistic (120% MVC/s). Three feature sets were assessed for describing the EEG traces in the classification process. These included: (i) MRCP Morphological Characteristics in the δ-band, such as timing and amplitude; (ii) MRCP Statistical Characteristics in the δ-band, such as standard deviation, mean, and kurtosis; and (iii) Wideband Time-frequency Features in the 0.1-90 Hz range. The four levels of RFD were accurately classified using a support vector machine. When utilizing the Wideband Time-frequency Features, the accuracy was 83% ± 9% (mean ± SD). Meanwhile, when using the MRCP Statistical Characteristics, the accuracy was 78% ± 12% (mean ± SD). The analysis of the MRCP waveform revealed that it contains highly informative data on the planning, execution, completion, and duration of the isometric dorsiflexion task. The temporal analysis emphasized the importance of the δ-band in translating to motor command, and this has promising implications for the field of neural engineering systems.

2.
Physiol Rep ; 12(14): e16037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034596

RESUMO

This study assessed muscle activity (root mean square, RMS, and median frequency, MDF) to evaluate the acute response to blood flow restriction (BFR) resistance exercise (RE) and conventional moderate intensity (MI) RE. We also performed exploratory analyses of differences based on sex and exercise-induced hypoalgesia (EIH). Fourteen asymptomatic individuals performed four sets of unilateral leg press with their dominant leg to volitional fatigue under two exercise conditions: BFR RE and MI RE. Dominant side rectus femoris (RF) and vastus lateralis (VL) muscle activity were measured using surface electromyography (sEMG) through exercise. RMS and MDF were calculated and compared between conditions and timepoints using a linear mixed model. Pressure pain thresholds (PPT) were tested before and immediately after exercise and used to quantify EIH. Participants were then divided into EIH responders and nonresponders, and the differences on RMS and MDF were compared between the two groups using Hedges' g. RMS significantly increased over time (RF: p = 0.0039; VL: p = 0.001) but not between conditions (RF: p = 0.4; VL: p = 0.67). MDF decreased over time (RF: p = 0.042; VL: p < 0.001) but not between conditions (RF: p = 0.74; VL: p = 0.77). Consistently lower muscle activation was found in females compared with males (BRF, RF: g = 0.63; VL, g = 0.5. MI, RF: g = 0.72; VL: g = 1.56), with more heterogeneous findings in MDF changes. For BFR, EIH responders showed greater RMS changes (Δ RMS) (RF: g = 0.90; VL: g = 1.21) but similar MDF changes (Δ MDF) (RF: g = 0.45; VL: g = 0.28) compared to nonresponders. For MI, EIH responders demonstrated greater increase on Δ RMS (g = 0.61) and decrease on Δ MDF (g = 0.68) in RF but similar changes in VL (Δ RMS: g = 0.40; Δ MDF: g = 0.39). These results indicate that when exercising to fatigue, no statistically significant difference was observed between BFR RE and conventional MI RE in Δ RMS and Δ MDF. Lower muscle activity was noticed in females. While exercising to volitional fatigue, muscle activity may contribute to EIH.


Assuntos
Fluxo Sanguíneo Regional , Treinamento Resistido , Humanos , Masculino , Feminino , Treinamento Resistido/métodos , Adulto , Fluxo Sanguíneo Regional/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/irrigação sanguínea , Limiar da Dor/fisiologia , Eletromiografia , Adulto Jovem , Exercício Físico/fisiologia
3.
J Neural Eng ; 20(6)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812933

RESUMO

Objective. Muscle network modeling maps synergistic control during complex motor tasks. Intermuscular coherence (IMC) is key to isolate synchronization underlying coupling in such neuromuscular control. Model inputs, however, rely on electromyography, which can limit the depth of muscle and spatial information acquisition across muscle fibers.Approach. We introduce three-dimensional (3D) muscle networks based on vibrational mechanomyography (vMMG) and IMC analysis to evaluate the functional co-modulation of muscles across frequency bands in concert with the longitudinal, lateral, and transverse directions of muscle fibers. vMMG is collected from twenty subjects using a bespoke armband of accelerometers while participants perform four hand gestures. IMC from four superficial muscles (flexor carpi radialis, brachioradialis, extensor digitorum communis, and flexor carpi ulnaris) is decomposed using matrix factorization into three frequency bands. We further evaluate the practical utility of the proposed technique by analyzing the network responses to various sensor-skin contact force levels, studying changes in quality, and discriminative power of vMMG.Main results. Results show distinct topological differences, with coherent coupling as high as 57% between specific muscle pairs, depending on the frequency band, gesture, and direction. No statistical decrease in signal strength was observed with higher contact force.Significance. Results support the usability vMMG as a tool for muscle connectivity analyses and demonstrate the use of IMC as a new feature space for hand gesture classification. Comparison of spectrotemporal and muscle network properties between levels of force support the robustness of vMMG-based network models to variations in tissue compression. We argue 3D models of vMMG-based muscle networks provide a new foundation for studying synergistic muscle activation, particularly in out-of-clinic scenarios where electrical recording is impractical.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Antebraço , Cotovelo
4.
Front Neurosci ; 17: 1239068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600002

RESUMO

Modulation in the temporal pattern of transcutaneous electrical nerve stimulation (TENS), such as Pulse width modulated (PWM), has been considered a new dimension in pain and neurorehabilitation therapy. Recently, the potentials of PWM TENS have been studied on sensory profiles and corticospinal activity. However, the underlying mechanism of PWM TENS on cortical network which might lead to pain alleviation is not yet investigated. Therefore, we recorded cortical activity using electroencephalography (EEG) from 12 healthy subjects and assessed the alternation of the functional connectivity at the cortex level up to an hour following the PWM TENS and compared that with the effect of conventional TENS. The connectivity between eight brain regions involved in sensory and pain processing was calculated based on phase lag index and spearman correlation. The alteration in segregation and integration of information in the network were investigated using graph theory. The proposed analysis discovered several statistically significant network changes between PWM TENS and conventional TENS, such as increased local strength and efficiency of the network in high gamma-band in primary and secondary somatosensory sources one hour following stimulation. Our findings regarding the long-lasting desired effects of PWM TENS support its potential as a therapeutic intervention in clinical research.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37399154

RESUMO

Functional muscle network analysis has attracted a great deal of interest in recent years, promising high sensitivity to changes of intermuscular synchronicity, studied mostly for healthy subjects and recently for patients living with neurological conditions (e.g., those caused by stroke). Despite the promising results, the between- and within-session reliability of the functional muscle network measures are yet to be established. Here, for the first time, we question and evaluate the test-retest reliability of non-parametric lower-limb functional muscle networks for controlled and lightly-controlled tasks, i.e., sit-to-stand, and over-the-ground walking, respectively, in healthy subjects. Fifteen subjects (eight females) were included over two sessions on two different days. The muscle activity was recorded using 14 surface electromyography (sEMG) sensors. The intraclass correlation coefficient (ICC) of the within-session and between-session trials was quantified for the various network metrics, including degree and weighted clustering coefficient. In order to compare with common classical sEMG measures, the reliabilities of the root mean square (RMS) of sEMG and the median frequency (MDF) of sEMG were also calculated. The ICC analysis revealed superior between-session reliability for muscle networks, with statistically significant differences when compared to classic measures. This paper proposed that the topographical metrics generated from functional muscle network can be reliably used for multi-session observations securing high reliability for quantifying the distribution of synergistic intermuscular synchronicities of both controlled and lightly controlled lower limb tasks. In addition, the low number of sessions required by the topographical network metrics to reach reliable measurements indicates the potential as biomarkers during rehabilitation.


Assuntos
Acidente Vascular Cerebral , Feminino , Humanos , Reprodutibilidade dos Testes , Eletromiografia , Músculos , Extremidade Inferior
6.
Sci Rep ; 13(1): 11000, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419881

RESUMO

Designing efficient and labor-saving prosthetic hands requires powerful hand gesture recognition algorithms that can achieve high accuracy with limited complexity and latency. In this context, the paper proposes a Compact Transformer-based Hand Gesture Recognition framework referred to as [Formula: see text], which employs a vision transformer network to conduct hand gesture recognition using high-density surface EMG (HD-sEMG) signals. Taking advantage of the attention mechanism, which is incorporated into the transformer architectures, our proposed [Formula: see text] framework overcomes major constraints associated with most of the existing deep learning models such as model complexity; requiring feature engineering; inability to consider both temporal and spatial information of HD-sEMG signals, and requiring a large number of training samples. The attention mechanism in the proposed model identifies similarities among different data segments with a greater capacity for parallel computations and addresses the memory limitation problems while dealing with inputs of large sequence lengths. [Formula: see text] can be trained from scratch without any need for transfer learning and can simultaneously extract both temporal and spatial features of HD-sEMG data. Additionally, the [Formula: see text] framework can perform instantaneous recognition using sEMG image spatially composed from HD-sEMG signals. A variant of the [Formula: see text] is also designed to incorporate microscopic neural drive information in the form of Motor Unit Spike Trains (MUSTs) extracted from HD-sEMG signals using Blind Source Separation (BSS). This variant is combined with its baseline version via a hybrid architecture to evaluate potentials of fusing macroscopic and microscopic neural drive information. The utilized HD-sEMG dataset involves 128 electrodes that collect the signals related to 65 isometric hand gestures of 20 subjects. The proposed [Formula: see text] framework is applied to 31.25, 62.5, 125, 250 ms window sizes of the above-mentioned dataset utilizing 32, 64, 128 electrode channels. Our results are obtained via 5-fold cross-validation by first applying the proposed framework on the dataset of each subject separately and then, averaging the accuracies among all the subjects. The average accuracy over all the participants using 32 electrodes and a window size of 31.25 ms is 86.23%, which gradually increases till reaching 91.98% for 128 electrodes and a window size of 250 ms. The [Formula: see text] achieves accuracy of 89.13% for instantaneous recognition based on a single frame of HD-sEMG image. The proposed model is statistically compared with a 3D Convolutional Neural Network (CNN) and two different variants of Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) models. The accuracy results for each of the above-mentioned models are paired with their precision, recall, F1 score, required memory, and train/test times. The results corroborate effectiveness of the proposed [Formula: see text] framework compared to its counterparts.


Assuntos
Gestos , Redes Neurais de Computação , Humanos , Algoritmos , Eletromiografia/métodos , Reconhecimento Psicológico , Mãos
7.
Sci Rep ; 13(1): 9968, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339986

RESUMO

Unrecognized deterioration of COVID-19 patients can lead to high morbidity and mortality. Most existing deterioration prediction models require a large number of clinical information, typically collected in hospital settings, such as medical images or comprehensive laboratory tests. This is infeasible for telehealth solutions and highlights a gap in deterioration prediction models based on minimal data, which can be recorded at a large scale in any clinic, nursing home, or even at the patient's home. In this study, we develop and compare two prognostic models that predict if a patient will experience deterioration in the forthcoming 3 to 24 h. The models sequentially process routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature. These models are also provided with basic patient information, including sex, age, vaccination status, vaccination date, and status of obesity, hypertension, or diabetes. The difference between the two models is the way that the temporal dynamics of the vital signs are processed. Model #1 utilizes a temporally-dilated version of the Long-Short Term Memory model (LSTM) for temporal processes, and Model #2 utilizes a residual temporal convolutional network (TCN) for this purpose. We train and evaluate the models using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA. The convolution-based model outperforms the LSTM based model, achieving a high AUROC of 0.8844-0.9336 for 3 to 24 h deterioration prediction on a held-out test set. We also conduct occlusion experiments to evaluate the importance of each input feature, which reveals the significance of continuously monitoring the variation of the vital signs. Our results show the prospect for accurate deterioration forecast using a minimum feature set that can be relatively easily obtained using wearable devices and self-reported patient information.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , COVID-19/diagnóstico , Frequência Cardíaca , Instituições de Assistência Ambulatorial , Hospitais
8.
IEEE Trans Haptics ; 16(4): 658-664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200129

RESUMO

The value of intrinsic energetic behavior of human biomechanics has recently been recognized and exploited in physical human-robot interaction (pHRI). The authors have recently proposed the concept of "Biomechanical Excess of Passivity," based on nonlinear control theory, to construct a user-specific energetic map. The map would assess the behavior of the upper-limb in absorbing the kinesthetic energy when interacting with robots. Integrating such knowledge into the design of pHRI stabilizers can reduce the conservatism of the control by unleashing hidden energy reservoirs indicating a less conservative margin of stability. The outcome would enhance the system's performance, such as rendering kinesthetic transparency of (tele)haptics systems. However, current methods require an offline data-driven identification procedure prior to each operation to estimate the energetic map of human biomechanics. This can be time-consuming and challenge users susceptible to fatigue. In this study, for the first time, we investigate the interday reliability of upper-limb passivity maps in a sample of five healthy subjects. Our statistical analyses indicate that the identified passivity map is highly reliable in estimating the expected energetic behavior based on Intraclass correlation coefficient analysis (conducted on different days and with various interactions). The results illustrate that a one-shot estimate is a reliable measure to be used repeatedly in biomechanics-aware pHRI stabilization, enhancing practicality in real-life scenarios.


Assuntos
Robótica , Percepção do Tato , Humanos , Reprodutibilidade dos Testes , Extremidade Superior , Fenômenos Biomecânicos
9.
Behav Brain Res ; 452: 114490, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37172741

RESUMO

OBJECTIVE: Compared with motor deficits, sensory information processing in Parkinson's disease (PD) is relatively unexplored. While there is increasing interest in understanding the sensory manifestations of PD, the extent of sensory abnormality in PD has remained relatively unexplored. Furthermore, most investigations on the sensory aspects of PD involve motor aspects, causing confounding results. As sensory deficits often arise in early PD development stages, they present a potential technological target for diagnosis and disease monitoring that is affordable and accessible. Considering this, the current study's aim is to assess visual spatiotemporal perception independent of goal directed movements in PD by designing and using a scalable computational tool. METHODS: A flexible 2-D virtual reality environment was created to evaluate various cases of visual perception. Using the tool, an experimental task quantifying the visual perception of velocity was tested on 37 individuals with PD and 17 age-matched control participants. RESULTS: PD patients, both ON and OFF PD therapy, displayed perceptual impairments (p = 0.001 and p = 0.008, respectively) at slower tested velocity magnitudes. These impairments were even observed in early stages of PD (p = 0.015). CONCLUSION: Visual velocity perception is impaired in PD patients, which suggests impairments in visual spatiotemporal processing occur in PD and provides a promising modality to be used with disease monitoring software. SIGNIFICANCE: Visual velocity perception shows high sensitivity to PD at all stages of the disease. Dysfunction in visual velocity perception may contribute to observed motor dysfunction in PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Percepção Visual , Visão Ocular , Transtornos da Visão , Sensação
10.
Artigo em Inglês | MEDLINE | ID: mdl-37022022

RESUMO

Characterization of fatigue using surface electromyography (sEMG) data has been motivated for rehabilitation and injury-preventative technologies. Current sEMG-based models of fatigue are limited due to (a) linear and parametric assumptions, (b) lack of a holistic neurophysiological view, and (c) complex and heterogeneous responses. This paper proposes and validates a data-driven non-parametric functional muscle network analysis to reliably characterize fatigue-related changes in synergistic muscle coordination and distribution of neural drive at the peripheral level. The proposed approach was tested on data collected in this study from the lower extremities of 26 asymptomatic volunteers (13 subjects were assigned to the fatigue intervention group, and 13 age/gender-matched subjects were assigned to the control group). Volitional fatigue was induced in the intervention group by moderate-intensity unilateral leg press exercises. The proposed non-parametric functional muscle network demonstrated a consistent decrease in connectivity after the fatigue intervention, as indicated by network degree, weighted clustering coefficient (WCC), and global efficiency. The graph metrics displayed consistent and significant decreases at the group level, individual subject level, and individual muscle level. For the first time, this paper proposed a non-parametric functional muscle network and highlighted the corresponding potential as a sensitive biomarker of fatigue with superior performance to conventional spectrotemporal measures.

11.
bioRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798422

RESUMO

Objective: Functional muscle network analysis has attracted a great deal of interest in recent years, promising high sensitivity to changes of intermuscular synchronicity, studied mostly for healthy subjects and recently for patients living with neurological conditions (e.g., those caused by stroke). Despite the promising results, the between- and within-session reliability of the functional muscle network measures are yet to be established. Here, for the first time, we question and evaluate the test-retest reliability of non-parametric lower-limb functional muscle networks for controlled and lightly-controlled tasks, i.e., sit-to-stand, and over-the-ground walking, respectively, in healthy subjects. Method: Fifteen subjects (eight females) were included over two sessions on two different days. The muscle activity was recorded using 14 surface electromyography (sEMG) sensors. The intraclass correlation coefficient (ICC) of the within-session and between-session trials was quantified for the various network metrics, including degree and weighted clustering coefficient. In order to compare with common classical sEMG measures, the reliabilities of the root mean square (RMS) of sEMG and the median frequency (MDF) of sEMG were also calculated. Results: The ICC analysis revealed superior between-session reliability for muscle networks, with statistically significant differences when compared to classic measures. Conclusion and Significance: This paper proposed that the topographical metrics generated from functional muscle network can be reliably used for multi-session observations securing high reliability for quantifying the distribution of synergistic intermuscular synchronicities of both controlled and lightly controlled lower limb tasks. In addition, the low number of sessions required by the topographical network metrics to reach reliable measurements indicates the potential as biomarkers during rehabilitation.

12.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711641

RESUMO

This paper, for the first time, compares the behaviors of nonlinear versus linear muscle networks in decoding hidden peripheral synergistic neural patterns during dynamic functional tasks. In this paper, we report a case study during which one healthy subject conducts a series of four lower limb repetitive tasks. Specifically, the paper focuses on tasks that involve the right knee joint, including walking, sit-tostand, stepping, and drop-jump. Twelve muscles were recorded using the Delsys Trigno system. The linear muscle network was generated using coherence analysis, and the nonlinear network was generated using Spearman's correlation. The results show that the degree, clustering coefficient, and global efficiency of the muscle network have the highest value among tasks in the linear domain for the walking task, while a low linear synergistic network behavior for the sit-to-stand is observed. On the other hand, the results show that the nonlinear functional muscle network decodes high connectivity (degree) and clustering coefficient and efficiency for the sit-tostand when compared with other tasks. We have also developed a two-dimensional functional connectivity plane composed of linear and nonlinear features and shown that it can span the lower-limb dynamic task space. The results of this paper for the first time highlight the importance of observing both linear and nonlinear connectivity patterns, especially for complex dynamic tasks. It should also be noted that through a simultaneous EEG recording (using BrainVision System), we have shown that, indeed, cortical activity may indirectly explain highly-connected nonlinear muscle network for the sit-to-stand task, highlighting the importance of nonlinear muscle network as a neurophysiological window of observation beyond the periphery.

13.
IEEE ASME Trans Mechatron ; 27(5): 2418-2428, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36340914

RESUMO

In this paper, we thoroughly analyze the effect of single-tendon and antagonistic tendons actuation on tension loss of multi-segment tendon-driven continuum manipulators (TD-CMs) with irregular geometry. To this end, we propose a generic analytical modeling approach and iterative algorithm that can solve the unknown correlation between distributed friction force, tendons' tension transmission loss, and planar deformation behavior of TD-CMs during tendons' pulling and releasing phases. The proposed generic model solely relies on known input tendons' tensions and does not require a priori knowledge of the manipulator's shape and/or other experimental conditions. To investigate the influence of actuation type on tension loss and deformation behavior of TD-CMs, we fabricated two different TD-CMs and performed various simulation and experimental studies with single-tendon and antagonistic tensions actuations. The obtained results indicate the importance of considering the effect of distributed friction force and actuation type on tension(s) loss of multi-segment TD-CMs. Moreover, it clearly demonstrates the efficacy and accuracy of the proposed model in providing insights and understanding of tension transmission process in various types of actuations in multi-segment TD-CMs with irregular geometry.

14.
Med Biol Eng Comput ; 60(11): 3187-3202, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115006

RESUMO

Depression diagnosis is a challenging clinical task currently conducted mostly using subjective criteria. It is well known that depression alters the neural activity in the brain, so that the corresponding neurophysiological signature may be measured using non-invasive electroencephalography (EEG) signals. These, in turn, may be possible to decode using machine learning algorithms. Despite the extensive literature, the existing techniques rely on several channels and obtrusive systems. In this paper, and for the first time, the diagnostic power of each EEG channel for depression detection is analyzed using Neighborhood Component Analysis (NCA). Our results indicate that a mere two features collected from one EEG channel suffice for reliable diagnosis. To evaluate the performance of the proposed method, a dataset comprising seven minutes of EEG recording from 84 subjects is used. The data was divided into two separate sets, one for feature selection and one for diagnostic classification. We delineate brain regions that have the strongest discriminative power linked to depression diagnosis. Thus, we identified one electrode (i.e., AF4) located on the frontal lobe, which can be used to diagnose depression with high accuracy. After evaluation of a series of shallow machine learning methods, we achieved the classification accuracy of 80.8%, sensitivity of 60% and specificity of 99.7% with two features from one electrode. We also achieved the highest classification accuracy of 91.8%, the specificity of 93.5%, and sensitivity of 90% with two electrodes and three features. Our findings show that it is possible to significantly reduce the complexity of algorithms to diagnose depression with the motivation of use in highly accessible wearable devices.


Assuntos
Depressão , Eletroencefalografia , Algoritmos , Depressão/diagnóstico , Eletrodos , Eletroencefalografia/métodos , Humanos , Aprendizado de Máquina , Máquina de Vetores de Suporte
16.
Sci Rep ; 12(1): 13029, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906239

RESUMO

Sensory information is critical for motor coordination. However, understanding sensorimotor integration is complicated, especially in individuals with impairment due to injury to the central nervous system. This research presents a novel functional biomarker, based on a nonlinear network graph of muscle connectivity, called InfoMuNet, to quantify the role of sensory information on motor performance. Thirty-two individuals with post-stroke hemiparesis performed a grasp-and-lift task, while their muscle activity from 8 muscles in each arm was measured using surface electromyography. Subjects performed the task with their affected hand before and after sensory exposure to the task performed with the less-affected hand. For the first time, this work shows that InfoMuNet robustly quantifies changes in functional muscle connectivity in the affected hand after exposure to sensory information from the less-affected side. > 90% of the subjects conformed with the improvement resulting from this sensory exposure. InfoMuNet also shows high sensitivity to tactile, kinesthetic, and visual input alterations at the subject level, highlighting its potential use in precision rehabilitation interventions.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Eletromiografia , Humanos , Teoria da Informação , Músculos , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior
17.
IEEE Trans Biomed Eng ; 69(12): 3678-3688, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35594214

RESUMO

OBJECTIVE: Objective evaluation of physiological responses using non-invasive methods for the assessment of vocal performance and voice disorders has attracted great interest. This paper, for the first time, aims to implement and evaluate perilaryngeal-cranial functional muscle networks. The study investigates the variations in topographical characteristics of the network and the corresponding ability to differentiate vocal tasks. METHOD: Twelve surface electromyography (sEMG) signals were collected bilaterally from six perilaryngeal and cranial muscles. Data were collected from eight subjects (four females) without a known history of voice disorders. The proposed muscle network is composed of pairwise coherence between sEMG recordings. The network metrics include (a) network degree and (b) weighted clustering coefficient (WCC). RESULTS: The varied phonation tasks showed the median degree, and WCC of the muscle network ascend monotonically, with a high effect size ( |rrb| âˆ¼ 0.5). Pitch glide, singing, and speech tasks were significantly distinguishable using degree and WCC ( |rrb| âˆ¼ 0.8). Also, pitch glide had the highest degree and WCC among all tasks (degree , WCC ). In comparison, classic spectrotemporal measures showed far less effectiveness (max |rrb|=0.12) in differentiating the vocal tasks. CONCLUSION: Perilaryngeal-cranial functional muscle network was proposed in this paper. The study showed that the functional muscle network could robustly differentiate the vocal tasks while the classic assessment of muscle activation fails to differentiate. SIGNIFICANCE: For the first time, we demonstrate the power of a perilaryngeal-cranial muscle network as a neurophysiological window to vocal performance. In addition, the study also discovers tasks with the highest network involvement, which may be utilized in the future to monitor voice disorders and rehabilitation.


Assuntos
Distúrbios da Voz , Voz , Feminino , Humanos , Eletromiografia , Voz/fisiologia , Fonação/fisiologia , Distúrbios da Voz/diagnóstico , Músculos
18.
J Neural Eng ; 19(2)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35234662

RESUMO

Objective.Transcutaneous electrical nerve stimulation (TENS) has been suggested as a possible non-invasive pain treatment. However, the underlying mechanism of the analgesic effect of TENS and how brain network functional connectivity (FC) is affected following the use of TENS is not yet fully understood. The purpose of this study was to investigate the effect of high-frequency TENS on the alteration of functional brain network connectivity and the corresponding topographical changes, besides perceived sensations.Approach.Forty healthy subjects participated in this study. Electroencephalography (EEG) data and sensory profiles were recorded before and up to an hour following high-frequency TENS (100 Hz) in sham and intervention groups. Brain source activity from EEG data was estimated using the LORETA algorithm. In order to generate the functional brain connectivity network, the Phase Lag Index was calculated for all pair-wise connections of eight selected brain areas over six different frequency bands (i.e.δ, θ, α, ß, γ, and 0.5-90 Hz).Main results.The results suggested that the FC between the primary somatosensory cortex (SI) and the anterior cingulate cortex, in addition to FC between SI and the medial prefrontal cortex, were significantly increased in the gamma-band, following the TENS intervention. Additionally, using graph theory, several significant changes were observed in global and local characteristics of functional brain connectivity in gamma-band.Significance.Our observations in this paper open a neuropsychological window of understanding the underlying mechanism of TENS and the corresponding changes in functional brain connectivity, simultaneously with alteration in sensory perception.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Encéfalo , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Humanos , Manejo da Dor , Estimulação Elétrica Nervosa Transcutânea/métodos
19.
IEEE Trans Biomed Eng ; 69(8): 2569-2580, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35157572

RESUMO

Functional muscle network is a critical concept in describing functional synergistic muscle synchronization and functional connectivity needed for the execution of complex motor tasks. Muscle network is typically derived from decomposition of intermuscular coherence (IMC) at different frequency bands of multichannel electromyography (EMG) measurements, which potentially limits out-of-clinic applications. In this investigation, we introduce muscle network analysis to assess the functional coordination and functional connectivity of muscles based on mechanomyography (MMG). We focus on a targeted group of muscles vital for activities of daily living (ADLs) in the upper-limb. Functional muscle networks are evaluated for ten able-bodied participants and three upper-limb amputees. Muscle activity was acquired from a custom-made wearable armband of MMG sensors placed over four superficial muscles around the forearm (flexor carpi radialis (FCR), brachioradialis (BR), extensor digitorum communis (EDC), and flexor carpi ulnaris (FCU)) while participants performed four different hand gestures. Muscle connectivity analysis at multiple frequency bands shows significant topographical differences across gestures for low (i.e., 5 Hz) and high (i.e., 12 Hz) activation frequencies as well as observable network differences between amputee and non-amputee subjects. Results demonstrate MMG can be used for the analysis of functional muscle connectivity and mapping of synergistic functional synchronization of upper-limb muscles in complex movement tasks. The new physiological modality provides key insights into neural circuitry of motor coordination. Findings further offer the concomitant outcomes of demonstrating feasibility of MMG to map muscle coherence from a neurophysiological perspective and providing a mechanistic basis for its translation in human-robot interface.


Assuntos
Atividades Cotidianas , Músculo Esquelético , Acústica , Eletromiografia , Antebraço/fisiologia , Humanos , Músculo Esquelético/fisiologia , Extremidade Superior
20.
Front Neurosci ; 15: 676469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393703

RESUMO

In this work, we investigate the effect of Parkinson's disease (PD), and common corresponding therapies on vision-based perception of motion, a critical perceptual ability required for performing a wide range of activities of daily livings. While PD has been recognized as mainly a motor disorder, sensory manifestation of PD can also play a major role in the resulting disability. In this paper, for the first time, the effect of disease duration and common therapies on vision-based perception of displacement were investigated. The study is conducted in a movement-independent manner, to reject the shadowing effects and isolate the targeted perceptual disorder to the maximum possible extent. Data was collected using a computerized graphical tool on 37 PD patients [6 early-stage de novo, 25 mid-stage using levodopa therapy, six later-stage using deep brain stimulation (DBS)] and 15 control participants. Besides the absolute measurement of perception through a psychometric analysis on two tested position reference magnitudes, we also investigated the linearity in perception using Weber's fraction. The results showed that individuals with PD displayed significant perceptual impairments compared to controls, though early-stage patients were not impaired. Mid-stage patients displayed impairments at the greater of the two tested reference magnitudes, while late-stage patients were impaired at both reference magnitudes. Levodopa and DBS use did not cause statistically significant differences in absolute displacement perception. The findings suggest abnormal visual processing in PD increasing with disease development, perhaps contributing to sensory-based impairments of PD such as bradykinesia, visuospatial deficits, and abnormal object recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...