Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769119

RESUMO

Human Ezrin Peptides (HEPs) are inhibitors of expression of IL-6 and other inflammatory cytokines, amplifiers of adaptive B cell and T cell immunity and enhancers of tissue repair. The mutation stable C-terminus of HIV gp120, mimics 69% of the "Hep-receptor", a zipped α-helical structure in the middle of the α domain of human ezrin protein. Synthetic peptides homologous to the Hep-receptor of ezrin of five to fourteen amino acids, activate anti-viral immunity against a wide range of viruses (HIV, HCV, herpes, HPV, influenza and other human respiratory viruses). Human Ezrin Peptide One (HEP1) TEKKRRETVEREKE (brand name Gepon, registered for human use in Russia from 2001) is a successful treatment for opportunistic infections in HIV-infected patients. That treats HEP1and prevents mucosal candidiasis, herpes zoster outbreaks and infection-induced chronic diarrhea. There are clinical publications in Russian on the successful treatments of chronic recurrent vaginal candidiasis, acute and chronic enterocolitis and dysbacteriosis, which are accompanied by normalization of the mucosal microbiome, and the decline or disappearance of inflammation. HEP1 is also an effective treatment and prevention for recurrent inflammation and ulceration in the stomach, duodenum and colon. HEP1 and RepG3 GEKKRRETVEREGG (a derivative of HEP1) have been used successfully as an inhaled spray peptide solution to treat a small number of human volunteers with mild-to-moderate COVID, resulting from SARS-CoV-2 infection, based on earlier successes in treating acute viral respiratory disease with inflammatory complications. Ezrin peptides seem to correct a dysregulation of innate immune responses to SARS-CoV-2. They are also adjuvants of B cell adaptive immunity and increase antibody titres, resulting in protection from lethal virus infection of mice. In a clinical study in Moscow, orally administered HEP1 was shown to enhance antibody-titres produced in response to hepatitis-B vaccination. These very preliminary but promising results with ezrin peptide treatment of COVID must be replicated in large-scale randomised placebo controlled clinical studies, to be verified.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteínas do Citoesqueleto/farmacologia , Proteínas do Citoesqueleto/uso terapêutico , Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Animais , Antivirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Camundongos , Infecções Respiratórias/tratamento farmacológico , Viroses/tratamento farmacológico
2.
Sci Rep ; 9(1): 4563, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872589

RESUMO

Signaling via Toll-like receptor 4 (TLR4) in macrophages constitutes an essential part of the innate immune response to bacterial infections. Detailed and quantified descriptions of TLR4 signal transduction would help to understand and exploit the first-line response of innate immune defense. To date, most mathematical modelling studies were performed on transformed cell lines. However, properties of primary macrophages differ significantly. We therefore studied TLR4-dependent activation of NF-κB transcription factor in bone marrow-derived and peritoneal primary macrophages. We demonstrate that the kinetics of NF-κB phosphorylation and nuclear translocation induced by a wide range of bacterial lipopolysaccharide (LPS) concentrations in primary macrophages is much faster than previously reported for macrophage cell lines. We used a comprehensive combination of experiments and mathematical modeling to understand the mechanisms of this rapid response. We found that elevated basal NF-κB in the nuclei of primary macrophages is a mechanism increasing native macrophage sensitivity and response speed to the infection. Such pre-activated state of macrophages accelerates the NF-κB translocation kinetics in response to low agonist concentrations. These findings enabled us to refine and construct a new model combining both NF-κB phosphorylation and translocation processes and predict the existence of a negative feedback loop inactivating phosphorylated NF-κB.


Assuntos
Núcleo Celular/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Linhagem Celular , Citosol/metabolismo , Ativação de Macrófagos/imunologia , Modelos Biológicos , Fosforilação , Transporte Proteico , Transdução de Sinais , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo , Ubiquitinação
3.
J Immunol ; 200(8): 2656-2669, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29500244

RESUMO

Dendritic cells (DCs) are well-known for their functions in orchestrating the innate and adaptive arms of immune defense. However, under certain conditions, DCs can exert tumoricidal activity. We have elucidated the mechanism of tumor suppression by TLR4-activated bone marrow-derived DCs (BMDCs) isolated from BALB/c mice. We identified that two distinct subsets of BMDCs (CD11b+CD11c+I-A/Eint and CD11b+CD11c+I-A/Ehigh) have different cytotoxic mechanisms of action. The cytotoxicity of the former subset is mediated through NO and reactive oxygen species and type I IFN (IFN-ß), whereas the latter subset acts only through IFN-ß. TLR4 agonists, LPS or pharmaceutical-grade ImmunoMax, activate CD11c+ BMDCs, which, in turn, directly kill 4T1 mouse breast cancer cells or inhibit their proliferation in an MHC-independent manner. These data define two populations of BMDCs with different mechanisms of direct cytotoxicity, as well as suggest that the I-A/Eint subset could be less susceptible to counteracting mechanisms in the tumor microenvironment and support investigation of similar subsets in human DCs.


Assuntos
Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Receptor 4 Toll-Like/agonistas , Animais , Células da Medula Óssea/metabolismo , Antígeno CD11c/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Interferon beta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microambiente Tumoral/fisiologia
5.
J Transl Med ; 12: 322, 2014 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-25432242

RESUMO

BACKGROUND: Previously we demonstrated that the resection of primary 4T1 tumors only slightly prolongs mouse survival, but importantly, creates a "window of opportunity" with attenuated suppressor cell and increased activated T cell populations. This suggests that additional activation of the immune system by immunostimulatory agents during this period may enhance anti-tumor immunity and potentially eradicate micro-metastatic disease in this stringent model. We hypothesized that the immunostimulator Immunomax®, which is comprised of a plant-derived polysaccharide, is non-toxic in humans and stimulates immune defense during the infectious diseases treatment, may have also anti-tumor activity and be beneficial in the adjuvant setting when endogenous anti-tumor responses are present and during the "window of opportunity" in post-resection metastatic breast cancer model. Here we provide the initial report that Immunomax® demonstrates the capacity to eliminate micro-metastatic disease in the post-resection, 4T1 mouse model of breast cancer. METHODS: The efficacy of Immunomax® was evaluated by analyzing survival rate and the number of spontaneous clonogenic tumor cells in the lung homogenates of mice. The frequencies of activated NK, CD4(+) and CD8(+) cells as well as myeloid-derived suppressor cells and Treg cells were evaluated using flow cytometry. Highly purified mouse and human dendritic and NK cells were sorted and the effect of Immunomax® on activation status of these cells was assessed by flow cytometry. The property of Immunomax® as TLR-4 agonist was determined by NF-κB/SEAP reporter gene assay, WB, RT-PCR. RESULTS: Immunomax® injections significantly prolonged overall survival and cured 31% of mice. This immunostimulator activates DCs via the TLR-4, which in turn stimulates tumoricidal NK cells and in vitro, completely inhibits growth of 4T1 cells. Incubation of PBMC from healthy donors with Immunomax® activates NK cells via activation of plasmacytoid DC leading significantly higher efficacy in killing of human NK-target cells K562 compared with non-treated cells. CONCLUSION: This is the first demonstration that Immunomax® is a TLR-4 agonist and the first report of a documented role for this pharmaceutical grade immunostimulator in augmenting anti-tumor activity, suggesting that incorporation of Immunomax® into developing breast cancer therapeutic strategies may be beneficial and with less potential toxicity than checkpoint inhibitors.


Assuntos
Neoplasias Mamárias Experimentais/terapia , Metástase Neoplásica , Extratos Vegetais/farmacologia , Receptor 4 Toll-Like/efeitos dos fármacos , Animais , Feminino , Linfócitos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C
6.
Clin Exp Metastasis ; 31(2): 185-98, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24096737

RESUMO

It is believed that primary tumor resection modulates host-tumor immune interaction, but this has not been characterized in a stringent breast cancer tumor model. This report, using the 4T1 murine mammary tumor model, characterizes for the first time the dynamic longitudinal changes in immunosuppressive and effector components of the immune system after resection of an established orthotopic primary tumor with a defined natural history of developing lung metastases. More specifically, we analyzed changes of absolute numbers and frequencies of MDSC, regulatory T cells (Treg), as well as activated CD4 and CD8 positive T cells in spleens and, in some studies, lungs of 4T1 tumor-bearing mice and mice after primary tumor resection. Importantly, using mathematical analyses we established that primary resection of an orthotopic tumor had created a "window of opportunity" with decreased tumor-associated immune suppression that existed for approximately 10 days. Although tumor resection did slightly prolong survival, it did not affect the ultimate development of metastatic disease since animals with resected tumors or intact primary tumors eventually died by day 47 and 43, respectively. This window of opportunity likely occurs in humans providing a rationale and parameters for integration and testing of immunotherapeutic strategies in this critical "window of opportunity" to combat the development of metastatic disease.


Assuntos
Imunoterapia , Neoplasias Mamárias Experimentais/cirurgia , Neoplasias Mamárias Experimentais/terapia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Camundongos
7.
Vaccine ; 28(8): 1987-96, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20188254

RESUMO

The aim of this study was to evaluate the immunogenicity of NS5A protein of human hepatitis C virus (HCV) when delivered as naked DNA (NS5A DNA), or recombinant protein (rNS5A). DBA/2J mice received NS5A DNA, rNS5A, or NS5A DNA/rNS5A in different prime-boost combinations with a peptidoglycan Immunomax((R)). The weakest response was induced after rNS5A prime and NS5A DNA boost; rNS5A alone induced an immune response with a strong Th2-component; and NS5A DNA alone, a relatively weak secretion of IL-2 and IFN-gamma. The most efficient was co-injection of NS5A DNA and rNS5A, which induced a significant increase in CD4(+) and CD8(+) T-cell counts, anti-NS5A antibodies, specific T-cell proliferation, and proinflammatory cytokine production in vitro against a broad spectrum of NS5A epitopes. Administration of the mixture of adjuvanted DNA and protein immunogens can be selected as the best regimen for further preclinical HCV-vaccine trials.


Assuntos
Hepatite C/prevenção & controle , Vacinas de DNA/imunologia , Vacinas contra Hepatite Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Proliferação de Células , Epitopos/imunologia , Feminino , Hepatite C/imunologia , Humanos , Imunização Secundária , Interferon gama/imunologia , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos DBA , Peptidoglicano/imunologia , Proteínas Recombinantes/imunologia , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...