Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999583

RESUMO

Zinc oxide nanoparticles (ZnO NPs) exhibit diverse applications, including antimicrobial, UV-blocking, and catalytic properties, due to their unique structure and properties. This study focused on the characterization of zinc oxide nanoparticles (ZnO NPs) synthesized from Juglans regia leaves and their application in mitigating the impact of simultaneous infection by Meloidogyne arenaria (root-knot nematode) and Macrophomina phaseolina (root-rot fungus) in cowpea plants. The characterization of ZnO NPs was carried out through various analytical techniques, including UV-visible spectrophotometry, Powder-XRD analysis, FT-IR spectroscopy, and SEM-EDX analysis. The study confirmed the successful synthesis of ZnO NPs with a hexagonal wurtzite structure and exceptional purity. Under in vitro conditions, ZnO NPs exhibited significant nematicidal and antifungal activities. The mortality of M. arenaria juveniles increased with rising ZnO NP concentrations, and a similar trend was observed in the inhibition of M. phaseolina mycelial growth. SEM studies revealed physical damage to nematodes and structural distortions in fungal hyphae due to ZnO NP treatment. In infected cowpea plants, ZnO NPs significantly improved plant growth parameters, including plant length, fresh mass, and dry mass, especially at higher concentrations. Leghemoglobin content and the number of root nodules also increased after ZnO NP treatment. Additionally, ZnO NPs reduced gall formation and egg mass production by M. arenaria nematodes and effectively inhibited the growth of M. phaseolina in the roots. Furthermore, histochemical analyses demonstrated a reduction in oxidative stress, as indicated by decreased levels of reactive oxygen species (ROS) and lipid peroxidation in ZnO NP-treated plants. These findings highlight the potential of green-synthesized ZnO NPs as an eco-friendly and effective solution to manage disease complex in cowpea caused by simultaneous nematode and fungal infections.

2.
Curr Pharm Des ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38867531

RESUMO

BACKGROUND: Patient adherence to therapy and compliance is always a challenge for care providers in the management of chronic disorders with multiple medications. OBJECTIVE: Our study focused on formulating concurrently prescribed ARB (Angiotensin Receptor Blocker), i.e., losartan potassium, and a cholesterol-lowering statin derivative, i.e., rosuvastatin calcium, in a fixed-dose combination tablet. METHODS: The drugs were selected based on the presence of synergism and variation in solubility characteristics. Trial batches with fixed concentrations of both active pharmaceutical ingredients (APIs) and varying quantities of different excipients were prepared by dry granulation technique and subjected to different quality control tests for tablets. Batch F5 was selected on the basis of in-process quality control data for the development of a drug release protocol. Experimental conditions were optimized. Based on the sink condition, phosphate buffer (pH 6.8) was selected as the dissolution medium. Simultaneous determination of both APIs in samples collected at predetermined time intervals was carried out using the RP-HPLC technique with acetonitrile, methanol, and water (20:25:55 v/v/v) as mobile phase. RESULTS: Complete dissolution of both APIs in the FDC tablet was achieved in 45 min in 900 mL of the selected medium. The in vitro drug release protocol was validated for accuracy and precision without interference with sample analysis. CONCLUSION: In this study, a validated, accurate, and robust dissolution testing method was developed for the newly formulated FDC tablet.

3.
Sci Rep ; 14(1): 14712, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926453

RESUMO

Human health is becoming concerned about exposure to endocrine disrupting chemicals (EDCs) emanating from plastic, such as phthalates, which are industrially employed as plasticizers in the manufacturing of plastic products. Due to some toxicity concerns, di(2-ethylhexyl) phthalate (DEHP) was replaced by diisononyl phthalate (DiNP). Recent data, however, highlights the potential of DiNP to interfere with the endocrine system and influence allergic responses. Asthma affects brain function through hypoxia, systemic inflammation, oxidative stress, and sleep disturbances and its effective management is crucial for maintaining respiratory and brain health. Therefore, in DiNP-induced asthmatic mice, this study investigated possible crosstalk between the lungs and the brain inducing perturbations in neural mitochondrial antioxidant status, inflammation biomarkers, energy metabolizing enzymes, and apoptotic indicators. To achieve this, twelve (n = 12, 20-30 g) male BALB/c mice were divided into two (2) experimental groups, each with five (6) mice. Mice in group II were subjected to 50 mg/kg body weight (BW) DiNP (Intraperitoneal and intranasal), while group I served as the control group for 24 days. The effects of DiNP on neural energy metabolizing enzymes (Hexokinase, Aldolase, NADase, Lactate dehydrogenase, Complex I, II, II & IV), biomarkers of inflammation (Nitric oxide, Myeloperoxidase), oxidative stress (malondialdehyde), antioxidants (catalase, glutathione-S-transferase, and reduced glutathione), oncogenic and apoptotic factors (p53, K-ras, Bcl, etc.), and brain histopathology were investigated. DiNP-induced asthmatic mice have significantly (p < 0.05) altered neural energy metabolizing capacities due to disruption of activities of enzymes of glycolytic and oxidative phosphorylation. Other responses include significant inflammation, oxidative distress, decreased antioxidant status, altered oncogenic-apoptotic factors level and neural degeneration (as shown in hematoxylin and eosin-stained brain sections) relative to control. Current findings suggest that neural histoarchitecture, energy metabolizing potentials, inflammation, oncogenic and apoptotic factors, and mitochondrial antioxidant status may be impaired and altered in DiNP-induced asthmatic mice suggesting a pivotal crosstalk between the two intricate organs (lungs and brain).


Assuntos
Apoptose , Asma , Pulmão , Camundongos Endogâmicos BALB C , Mitocôndrias , Estresse Oxidativo , Ácidos Ftálicos , Animais , Apoptose/efeitos dos fármacos , Asma/metabolismo , Asma/induzido quimicamente , Asma/patologia , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Masculino , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos
4.
Heliyon ; 10(10): e31563, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826706

RESUMO

A series of six unsymmetrical thiourea derivatives, namely 1-cyclohexyl-3-(pyridin-2-yl) thiourea (1), 1-cyclohexyl-3-(3-methylpyridin-2-yl)thiourea (2), 1-cyclohexyl-3-(2,4-dimethylphenyl) thiourea (3), 1-(4-chlorophenyl)-3-cyclohexylthiourea (4), 1-(3-methylpyridin-2-yl)-3-phenylthiourea (5), and 1-(3-chlorophenyl)-3-phenylthiourea (6), were successfully synthesized via reaction between different amines with isothiocyanates under a non-catalytic environment. Structural elucidation of compounds (1-6) was performed using FT-IR and NMR (1H and 13C) spectroscopy. The infrared spectra displayed characteristic stretching vibrations, while the 13C NMR chemical shifts of the thiourea moiety (C[bond, double bond]S) were observed in the range of 179.1-181.4 ppm. The antioxidative and antimicrobial properties of the compounds were assessed, as well as their inhibitory effects on acetylcholinesterase and butyrylcholinesterase were evaluated. In order to analyze the fluorescence characteristics of each compound (1-6), the excitation (λex) and emission (λem) wavelengths were scanned within the range of 250-750 nm, with the solvent blank serving as a standard. It was observed that when dissolved in acetone, toluene, tetrahydrofuran, and ethyl acetate, these compounds exhibited emission peaks ranging from 367 to 581 nm and absorption peaks ranging from 275 to 432 nm.

5.
Eur J Pharm Sci ; 198: 106797, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735401

RESUMO

The multicomponent etiology, complex clinical implications, dose-based side effect and degree of pain mitigation associated with the current pharmacological therapy is incapable in complete resolution of chronic neuropathic pain patients which necessitates the perpetual requirement of novel medication therapy. Therefore, this study explored the ameliorative aptitude of two novel methanimine imitative like (E)-N-(4-nitrobenzylidene)-4­chloro-2-iodobenzamine (KB 09) and (E)-N-(4-methylbenzylidene)-4­chloro-2-iodobenzamine (KB 10) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rat model. Standard behavioral tests like dynamic and static allodynia, cold, thermal and mechanical hyperalgesia along with rotarod activity were performed at various experimental days like 0, 3, 7, 14 and 21. Enzyme linked immunosorbent assay (ELISA) on spinal tissue and antioxidant assays on sciatic nerve were executed accompanied by molecular docking and simulation studies. Prolonged ligation of sciatic nerve expressively induced hyperalgesia as well as allodynia in rats. KB 09 and KB 10 substantially attenuated the CCI elicited hyperalgesia and allodynia. They significantly reduced the biomarkers of pain and inflammation like Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ELISA and while enhanced the GSH, SOD and CAT and diminished the MDA levels during antioxidant assays. KB 09 displayed -9.62 kcal/mol with TNF-α and -7.68 kcal/mol binding energy with IL-6 whereas KB 10 exhibited binding energy of -8.20 kcal/mol with IL-6 while -11.68 kcal/mol with TNF-α and hence both trial compounds ensured stable interaction with IL-6 and TNF-α during computational analysis. The results advocated that both methanimine derivatives might be novel candidates for attenuation of CCI-induced neuropathic pain prospects via anti-nociceptive, anti-inflammatory and antioxidant mechanisms.


Assuntos
Hiperalgesia , Simulação de Acoplamento Molecular , Neuralgia , Nervo Isquiático , Animais , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Masculino , Hiperalgesia/tratamento farmacológico , Nervo Isquiático/lesões , Nervo Isquiático/efeitos dos fármacos , Ratos , Ratos Wistar , Modelos Animais de Doenças , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Simulação por Computador , Constrição , Iminas/química , Iminas/farmacologia
6.
Acta Trop ; 255: 107236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692450

RESUMO

Endometritis reduces reproductive effectiveness and leads to significant financial losses in the dairy sector. Luteolin is a natural phyto-flavonoid compound with many biological activities. However, the therapeutic effect of Luteolin against lipopolysaccharides (LPS)-induced endometritis has not yet been explored. A total of eighty female Kunming mice were randomly assigned into four treatment groups (n = 20). Following a successful initiation of the endometritis model by LPS, Luteolin was intraperitoneally administered three times, at six-hour intervals between each injection in the Luteolin groups. The histopathological findings revealed that Luteolin significantly alleviated uterine injury induced by LPS. Moreover, Luteolin suppressed the synthesis of pro-inflammatory mediators [interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α] while promoting the synthesis of an anti-inflammatory mediator (IL-10) altered by LPS. Furthermore, Luteolin significantly mitigated the LPS-induced oxidative stress by scavenging malondialdehyde (MDA) and reactive oxygen species (ROS), accumulation and boosting the capacity of antioxidant enzyme activities such as superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (Gpx1) in the uterine tissue of mice. Additionally, injection of Luteolin markedly increased the expression of Toll-like receptors (TLR) 4 both at mRNA and protein levels under LPS stimulation. Western blotting and ELISA findings demonstrated that Luteolin suppressed the activation of the NF-κB pathway in response to LPS exposure in the uterine tissue of mice. Notably, Luteolin enhanced the anti-oxidant defense system by activating the Nrf2 signaling pathway under LPS exposure in the uterine tissue of mice. Conclusively, our findings demonstrated that Luteolin effectively alleviated LPS-induced endometritis via modulation of TLR4-associated Nrf2 and NF-κB signaling pathways.


Assuntos
Lipopolissacarídeos , Luteolina , Estresse Oxidativo , Luteolina/farmacologia , Luteolina/uso terapêutico , Animais , Feminino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Endometrite/tratamento farmacológico , Escherichia coli , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Útero/efeitos dos fármacos , Útero/patologia , Antioxidantes/farmacologia , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Animais não Endogâmicos
7.
BMC Plant Biol ; 24(1): 240, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570817

RESUMO

Apple is an important fruit crop that is always in demand due to its commercial and nutraceutical value. Also, the requirement for quality planting material for this fruit crop for new plantations is increasing continuously. In-vitro propagation is an alternative approach, which may help to produce genetically identical high grade planting material. In this study, for the first time, an efficient and reproducible propagation protocol has been established for apple root stock MM 104 via axillary bud. Culturing axillary buds on Murashige and Skoog apple rootstock (MM 104) resulted in better in-vitro propagation. (MS) basal medium supplemented with 3.0% (w/v) sucrose and 0.8% (w/v) agar. The axillary buds were established in MS basal medium with BA (5.0 µM), NAA (1.0 µM) and further used to establish invitro propagation protocol. Plant Growth Regulators (PGRs), BA (1.0 µM) in combination with NAA (1.0 µM) was found most efficient for shoot multiplication (100%) and produced 9.8 shoots/explants with an average shoot length of (2.4 ± cm). All the shoots produced roots in 0.1 µM IBA with a 5-day dark period. Acclimatization of in-vitro raised plantlets was obtained with vermiculite: perlite: sand: soil (2:2:1:1) resulting in 76% survival under field conditions. The study showed that the use of axillary bud is efficient for multiple-shoot production of apple rootstock (MM 104). This is the first comprehensive report on in-vitro growth of apple root stock MM 104 with an assessment of genetic stability using DNA fingerprinting profiles based on Inter Simple Sequence Repeats (ISSR) and Start Codon Targeted (SCoT). The genetic stability of in-vitro-produced plants, as determined by SCoT and ISSR primers, demonstrated genetic closeness to the mother plant.


Assuntos
Malus , Malus/genética , Códon de Iniciação , Reguladores de Crescimento de Plantas , Frutas , Repetições de Microssatélites
8.
Sci Rep ; 14(1): 9871, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684775

RESUMO

The Plasmodium is responsible for malaria which poses a major health threat, globally. This study is based on the estimation of the relative abundance of mosquitoes, and finding out the correlations of meteorological parameters (temperature, humidity and rainfall) with the abundance of mosquitoes. In addition, this study also focused on the use of nested PCR (species-specific nucleotide sequences of 18S rRNA genes) to explore the Plasmodium spp. in female Anopheles. In the current study, the percentage relative abundance of Culex mosquitoes was 57.65% and Anopheles 42.34% among the study areas. In addition, the highest number of mosquitoes was found in March in district Mandi Bahauddin at 21 °C (Tmax = 27, Tmin = 15) average temperature, 69% average relative humidity and 131 mm rainfall, and these climatic factors were found to affect the abundance of the mosquitoes, directly or indirectly. Molecular analysis showed that overall, 41.3% of the female Anopheles pools were positive for genus Plasmodium. Among species, the prevalence of Plasmodium (P.) vivax (78.1%) was significantly higher than P. falciparum (21.9%). This study will be helpful in the estimation of future risk of mosquito-borne diseases along with population dynamic of mosquitoes to enhance the effectiveness of vector surveillance and control programs.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Plasmodium , Reação em Cadeia da Polimerase , Animais , Anopheles/parasitologia , Anopheles/genética , Mosquitos Vetores/parasitologia , Mosquitos Vetores/genética , Reação em Cadeia da Polimerase/métodos , Feminino , Plasmodium/genética , Plasmodium/isolamento & purificação , Malária/epidemiologia , Malária/parasitologia , Malária/transmissão , RNA Ribossômico 18S/genética , Culex/parasitologia , Culex/genética , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/genética
9.
Sci Rep ; 14(1): 5650, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453987

RESUMO

High-altitude environments present formidable challenges for survival and reproduction, with organisms facing limited oxygen availability and scarce nutrient resources. The yak (Bos grunniens), indigenous to the Tibetan Plateau, has notably adapted to these extreme conditions. This study delves into the genomic basis of the yak's adaptation, focusing on the positive selection acting on genes involved in nutrient assimilation pathways. Employing techniques in comparative genomics and molecular evolutionary analyses, we selected genes in the yak that show signs of positive selection associated with nutrient metabolism, absorption, and transport. Our findings reveal specific genetic adaptations related to nutrient metabolism in harsh climatic conditions. Notably, genes involved in energy metabolism, oxygen transport, and thermoregulation exhibited signs of positive selection, suggesting their crucial role in the yak's successful colonization of high-altitude regions. The study also sheds light on the yak's immune system adaptations, emphasizing genes involved in response to various stresses prevalent at elevated altitudes. Insights into the yak's genomic makeup provide valuable information for understanding the broader implications of high-altitude adaptations in mammalian evolution. They may contribute to efforts in enhancing livestock resilience to environmental challenges.


Assuntos
Altitude , Genoma , Animais , Bovinos , Genômica , Evolução Molecular , Oxigênio , Mamíferos
10.
Microb Pathog ; 189: 106571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341107

RESUMO

Nanomaterials containing tungsten (TNMs), characterized by diverse nanostructures had been extensively used in biomedical sector. Despite numerous reports focusing on TNM applications in specific biomedical areas, there is a noticeable absence of comprehensive studies that focused on detailed characterization of nanomaterials along with their biological applications. The present work described the structural, morphological, and antimicrobial properties of tungsten oxide (WO3) nanoparticles coated by antibiotics (nanobiotics), and their application on single and mixed bacterial culture. The nanobiotics included in this study were WO3 coated with ampicillin (W+A), WO3 coated with penicillin (P+W), and WO3 coated with ciprofloxacin (C+W). Techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FTIR), Rrman spectroscopy, and UV-visible spectroscopy were used to characterize synthesized nanoparticles. The minimum inhibitory concentration of C+W nanobiotic against S. aureus, E. coli, and mixed culture (S. aureus +E. coli) was lower than that of P+W and A+W. The impact of incubation period showed significant differences for each of nanobiotic against S. aureus, E. coli, and mixed culture. However, there were also non-significant differences among incubation periods for antibacterial activity of nanobiotics. It was pertinent to note that percentage variation in susceptibility of S. aureus with respect to mixed culture remained higher as compared to E. coli, indicating it stronger candidate imposing resistance. This paper thus suggested the strategy of coating of antibiotics with with WO3 nanoparticles as an ideal combination for resistance modulation against single and mixed culture bacteria.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Óxidos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Tungstênio/farmacologia , Tungstênio/química , Escherichia coli , Staphylococcus aureus , Ciprofloxacina/farmacologia , Bactérias , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Difração de Raios X
11.
Sci Rep ; 14(1): 3590, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351259

RESUMO

COVID-19 appeared as a highly contagious disease after its outbreak in December 2019 by the virus, named SARS-CoV-2. The threat, which originated in Wuhan, China, swiftly became an international emergency. Among different genomic products, spike protein of virus plays a crucial role in the initiation of the infection by binding to the human lung cells, therefore, SARS-CoV-2's spike protein is a promising therapeutic target. Using a combination of a structure-based virtual screening and biochemical assay, this study seeks possible therapeutic candidates that specifically target the viral spike protein. A database of ~ 850 naturally derived compounds was screened against SARS-CoV-2 spike protein to find natural inhibitors. Using virtual screening and inhibitory experiments, we identified acetyl 11-keto-boswellic acid (AKBA) as a promising molecule for spike protein, which encouraged us to scan the rest of AKBA derivatives in our in-house database via 2D-similarity searching. Later 19 compounds with > 85% similarity with AKBA were selected and docked with receptor binding domain (RBD) of spike protein. Those hits declared significant interactions at the RBD interface, best possess and excellent drug-likeness and pharmacokinetics properties with high gastrointestinal absorption (GIA) without toxicity and allergenicity. Our in-silico observations were eventually validated by in vitro bioassay, interestingly, 10 compounds (A3, A4, C3, C6A, C6B, C6C, C6E, C6H, C6I, and C6J) displayed significant inhibitory ability with good percent inhibition (range: > 72-90). The compounds C3 (90.00%), C6E (91.00%), C6C (87.20%), and C6D (86.23%) demonstrated excellent anti-SARS CoV-2 spike protein activities. The docking interaction of high percent inhibition of inhibitor compounds C3 and C6E was confirmed by MD Simulation. In the molecular dynamics simulation, we observed the stable dynamics of spike protein inhibitor complexes and the influence of inhibitor binding on the protein's conformational arrangements. The binding free energy ΔGTOTAL of C3 (-38.0 ± 0.08 kcal/mol) and C6E (-41.98 ± 0.08 kcal/mol) respectively indicate a strong binding affinity to Spike protein active pocket. These findings demonstrate that these molecules particularly inhibit the function of spike protein and, therefore have the potential to be evaluated as drug candidates against SARS-CoV-2.


Assuntos
COVID-19 , Humanos , Farmacóforo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
12.
Heliyon ; 9(11): e21237, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027664

RESUMO

Polycystic ovary syndrome (PCOS) is a common hormonal disorder that affects women of reproductive age and is characterized by multiple ovarian cysts, irregular menstrual cycles, and excessive androgen hormone production. The present study aimed to investigate the therapeutic efficacy of melatonin in alleviating PCOS-induced alterations in female Wistar rats. PCOS was induced in female albino rats by administering letrozole at a dose of 1 mg/kg for 21 days. A total of 24 rats were randomly selected and divided into four groups: group I (normal control), group II (melatonin treatment), group III (letrozole treatment), and group IV (melatonin therapy for PCOS rats). Physical parameters (body and uterus weight), hormone profile (LH and FSH), and steroidogenic enzyme activities and an oral glucose test were assessed using standard methods. Histological analysis was performed using hematoxylin and eosin staining. The results demonstrated that exogenous melatonin administration significantly improved PCOS symptoms in rats, including reduced body weight gain, changes in organ weight/body weight index, blood glucose level, percentage diestrus phase, testosterone, estradiol, progesterone, and LH/FSH ratio, as well as 3ß-HSD and 17ß-HSD enzyme activity. Histopathological findings revealed well-developed follicles, decreased cystic follicles, and increased antral follicles, Graafian follicles, and corpus luteum in PCOS rats treated with melatonin. These positive outcomes suggest that exogenous melatonin may hold promise as a valuable remedy for PCOS conditions in female rats. Further research is warranted to fully elucidate the underlying mechanisms and potential clinical applications of melatonin in the context of PCOS.

13.
Am J Transl Res ; 15(10): 5997-6014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969197

RESUMO

OBJECTIVES: The use of medicinal plants for diabetes treatment is increasing owing to their effectiveness and safety compared to synthetic drugs. Thus, the ameliorative effects of Azanza garckeana (F. Hoffm.) fractions in diabetes-induced dyslipidemia, hepatopathy, and nephropathy in rats were evaluated in this study. METHODS: Rats with alloxan (120 mg/kg body weight (BW))-induced diabetes were randomized into different groups (n=5) and treated with the crude methanolic extract, and fractions (n-hexane, ethyl acetate, and aqueous fractions) of A. garckeana each at 100, 200, and 400 mg/kg BW. Glibenclamide (5 mg/kg BW) was used as a reference drug, and all treatments were administered orally daily for 6 weeks. RESULTS: Our data revealed that treatment with the crude extract caused a dose-dependent hypoglycemic effect of 61.32±3.45%, 76.05±3.05%, and 78.59±5.90% at 100, 200, and 400 mg/kg BW, respectively and improved the BW of the animals. The extract also ameliorated the elevated cholesterol, triglyceride, low-density lipoprotein cholesterol, and increased serum levels of high-density lipoprotein cholesterol compared with untreated control animals. The extract also reversed serum biochemical alterations in aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine, total and direct bilirubin, urea, and uric acid that were observed in untreated diabetic rats. Interestingly, the A. garckeana fraction also exhibited significant protection against diabetes-induced dyslipidemia, hepatopathy, and nephropathy in rats, with the ethyl acetate fraction exhibiting a remarkable protective effect. The LC-MS characterisation of the active fraction identified the presence of various phenolic and flavonoid compounds that could be responsible for the bioactivity of the fraction. CONCLUSION: Collectively, this study suggests the potential application of A. garckeana for effective treatment of diabetic nephropathy, with the ethyl acetate fraction of this plant representing a reserve of potential candidates for developing new drugs.

14.
Stem Cells Int ; 2023: 6767735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908315

RESUMO

Despite its clinical value, cisplatin (CISP) is complicated by marked hepatotoxicity via inducing oxidative stress, inflammatory, and apoptotic pathways. This study aims to explore the protective impact of azilsartan (AZIL), an antihypertensive drug, in addition to adipose tissue-derived mesenchymal stem cells (AD-MSCs) on CISP-induced hepatotoxicity. After characterization and labeling of AD-MSCs by PKH26 dye, 54 Wistar male albino rats were randomly divided into nine groups: I (CONT), II (AZIL.H), III (CISP), IV (CISP + AZIL.L), V (CISP + AZIL.H), VI (CISP + AD-MSCs), VII (CISP + AZIL.L + AD-MSCs), VIII (CISP + AZIL.H + AD-MSCs), and IX (CISP + VITA C). Serum alanine aminotransferase (ALT), alanine aminotransferase (AST), and albumin levels were determined. Assessment of reactive oxygen species, malondialdehyde, and glutathione contents, and superoxide dismutase activity and histopathological evaluations were done on hepatic tissue. Quantitative real-time PCR was utilized to estimate the expression of TNF-α and IL-6 genes. Cell homing of labeled AD-MSCs to the liver tissues was investigated. Hepatic expression of JNK1/2, ERK1/2, p38, Bax, Bcl-2, and cleaved caspase-3 proteins was investigated by western blot analysis. CISP elevated serum ALT and AST activities, reduced albumin level, and remarkably changed the hepatic architecture. It increased the expression TNF-α and IL-6 genes, raised the expression of JNK1/2, ERK1/2, p38, Bax, and cleaved caspase-3 proteins, and diminished the Bcl-2 protein. By contrast, treatment of animals with either AZIL or AD-MSCs dramatically reduced the effects of CISP injection. Moreover, treatment with combination therapy (AZIL.L or H + AD-MSCs) considerably mitigated all previously mentioned alterations superior to AZIL or AD-MSCs alone, which might be attributed to the AZIL-enhanced homing ability of AD-MSCs into the injured liver tissue. In conclusion, the present findings demonstrated that AZIL improves the hepatoprotective potential of AD-MSCs against CISP-induced hepatotoxicity by modulating oxidative stress, mitogen-activated protein kinase, and apoptotic pathways.

15.
Sci Rep ; 13(1): 18716, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907533

RESUMO

This study investigated the dynamics in pyrethriod resistance and the presence/frequencies of L1014F knockdown resistance mutant allelles in Culex quinquefasciatus vector populations from Uruan Local Government Area of AkwaIbom State, Southern Nigeria between the months of March and November, 2021. Uruan LGA is among the endemic LGAs for lymphatic filariasis in AkwaIbomState. Female Anopheles mosquitoes from Eman Uruan, Ituk Mbang and Idu Uruan were exposed to permethrin, deltamethrin and alphacypermethrin in CDC insecticide coated bottles for susceptibility bioassay following standard protocols. The mosquitoes were obtained as aquatic forms from the study sites and reared under laboratory conditions to adults. The adult mosquitoes were used for this study. All the mosquitoes used for the insecticide susceptibility bioassay were morphologically identified. Standard Polymerase chain reaction (PCR) was used for authenticating the Culex quinquefasciatus species. A portion of the vgsc (917 bp) gene spanning the entire intron and the exon containing the L1014F mutation associated with knockdown resistance (kdr) in the vectorswere amplified using Allele-SPECIFIC POLYMERASE CHAIN REACTION (AS-PCR) in order to detect target site insensitivity in the vectors from the study sites. Results obtained revealed that vectors from all the study sites were resistant to permethrin insecticide (mortality rate: 18-23%). Suspected resistance (mortality rate: 90-93%) to deltamethrin and low resistance (mortality rate: 82-85%) to alphacypermethrin insecticides were detected. knockdown was more rapid with deltamethrin and alphacypermethrin than with permethrin across the study sites considering their KDT50 and KDT95. The frequency of the resistant phenotypes ranged from 35.14 to 55.3% across the study sites with a net of 45.1% resistant phenotype recorded in this study. The 1014F allelic frequency calculated from Hardy-Weinberg principle for vector populations across the study sites ranged from 0.500 (50.00%) to 0.7763 (77.63%). All populations witnessed significant (p < 0.05) deviations from Hardy-Weinberg equilibrium in the distribution of these alleles. The findings of this study show that there is a tendency to record an entire population of resistant vectors in this study area over time due to natural selection. The public health implication of these findings is that the use of pyrethroid based aerosols, coils, sprays, LLITNs and others for the purpose of controlling vectors of lymphatic filariasis and other diseases may be effort in futility.


Assuntos
Anopheles , Culex , Filariose Linfática , Inseticidas , Piretrinas , Animais , Feminino , Inseticidas/farmacologia , Permetrina/farmacologia , Culex/genética , Alelos , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Piretrinas/farmacologia , Anopheles/genética
16.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894631

RESUMO

Eucalyptus, a therapeutic plant mentioned in the ancient Algerian pharmacopeia, specifically two species belonging to the Myrtaceae family, E. radiata and E. cinerea, were investigated in this study for their antibacterial, antioxidant, and anti-inflammatory properties. The study used aqueous extracts (AE) obtained from these plants, and the extraction yields were found to be different. The in vitro antibacterial activity was evaluated using a disc diffusion assay against three typical bacterial strains. The results showed that the two extracts were effective against all three strains. Both extracts displayed significant antioxidant activity compared to BHT. The anti-inflammatory impact was evaluated using a protein (BSA) inhibition denaturation test. The E. radiata extract was found to inhibit inflammation by 85% at a concentration of 250 µg/mL, significantly higher than the Aspirin. All phytoconstituents present good pharmacokinetic characteristics without toxicity except very slight toxicity of terpineol and cineol and a maximum binding energy of -7.53 kcal/mol for its anti-TyrRS activity in silico. The study suggests that the extracts and their primary phytochemicals could enhance the efficacy of antibiotics, antioxidants, and non-steroidal anti-inflammatory drugs (NSAIDs). As pharmaceutical engineering experts, we believe this research contributes to developing natural-based drugs with potential therapeutic benefits.


Assuntos
Antioxidantes , Extratos Vegetais , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos/química
17.
Int J Equity Health ; 22(1): 189, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697315

RESUMO

INTRODUCTION: Cancer is a significant public health challenge globally, with nearly 2000 lives lost daily in Africa alone. Without adequate measures, mortality rates are likely to increase. The major challenge for cancer care in Africa is equity and prioritization, as cancer is not receiving adequate attention from policy-makers and strategic stakeholders in the healthcare space. This neglect is affecting the three primary tiers of cancer care: prevention, diagnosis, and treatment/management. To promote cancer care equity, addressing issues of equity and prioritization is crucial to ensure that everyone has an equal chance at cancer prevention, early detection, and appropriate care and follow-up treatment. METHODOLOGY: Using available literature, we provide an overview of the current state of cancer care in Africa and recommendations to close the gap. RESULTS: We highlight several factors that contribute to cancer care inequity in Africa, including inadequate funding for cancer research, poor cancer education or awareness, inadequate screening or diagnostic facilities, lack of a well-organized and effective cancer registry system and access to care, shortage of specialized medical staff, high costs for screening, vaccination, and treatment, lack of technical capacity, poor vaccination response, and/or late presentation of patients for cancer screening. We also provide recommendations to address some of these obstacles to achieving cancer care equity. Our recommendations are divided into national-level initiatives and capacity-based initiatives, including cancer health promotion and awareness by healthcare professionals during every hospital visit, encouraging screening and vaccine uptake, ensuring operational regional and national cancer registries, improving healthcare budgeting for staff, equipment, and facilities, building expertise through specialty training, funding for cancer research, providing insurance coverage for cancer care, and implementing mobile health technology for telemedicine diagnosis. CONCLUSION: Addressing challenges to cancer equity holistically would improve the likelihood of longer survival for cancer patients, lower the risk factors for groups that are already at risk, and ensure equitable access to cancer care on the continent. This study identifies the existing stance that African nations have on equity in cancer care, outlines the current constraints, and provides suggestions that could make the biggest difference in attaining equity in cancer care.


Assuntos
Disparidades em Assistência à Saúde , Neoplasias , Humanos , Pessoal Administrativo , África Subsaariana , Tecnologia Biomédica , População Negra , Orçamentos , Neoplasias/diagnóstico , Neoplasias/terapia , Disparidades em Assistência à Saúde/economia , Disparidades em Assistência à Saúde/etnologia
18.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765088

RESUMO

A series of benzimidazole-based Schiff base derivatives (1-18) were synthesized and structurally elucidated through 1H NMR, 13C NMR and HREI-MS analysis. Subsequently, these synthetic derivatives were subjected to evaluation for their inhibitory capabilities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). All these derivatives showed significant inhibition against AChE with an IC50 value in the range of 123.9 ± 10.20 to 342.60 ± 10.60 µM and BuChE in the range of 131.30 ± 9.70 to 375.80 ± 12.80 µM in comparison with standard Donepezil, which has IC50 values of 243.76 ± 5.70 µM (AChE) and 276.60 ± 6.50 µM (BuChE), respectively. Compounds 3, 5 and 9 exhibited potent inhibition against both AChE and BuChE. Molecular docking studies were used to validate and establish the structure-activity relationship of the synthesized derivatives.

20.
Sci Rep ; 13(1): 10539, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386048

RESUMO

Silver nanoparticles (AgNPs) have been generally used due to their strong antibacterial, antiviral and antifungal and antimicrobial properties. However, their toxicity is a subject of sustained debate, thus requiring further studies. Hence, this study examines the adverse effects of the sub-dermal administered dose of AgNPs (200 nm) on the liver, kidney and heart of male Wistar rats. Thirty male rats were randomly distributed into six groups of five animals per group. Group A and D served as the control and received distilled water for 14 and 28 days respectively. Groups B and C were sub-dermally exposed to AgNPs at 10 and 50 mg/kg daily for 14 days while E and F were sub-dermally exposed to AgNPs at 10 and 50 mg/kg daily for 28 days. The liver, kidney and heart of the animals were collected, processed and used for biochemical and histological analysis. Our results revealed that the subdermal administration of AgNPs induced significant increased (p < 0.05) activities of aspartate aminotransferase (AST), alanine transferase (ALT), alkaline phosphatase (ALP), urea, creatinine, and malondialdehyde (MDA) while decreasing the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and total thiol groups in the rat tissues. Our findings suggest that the subdermal administration of AgNPs induced oxidative stress and impaired the hepatic, renal and cardiac functions of male Wistar rats.


Assuntos
Nanopartículas Metálicas , Prata , Masculino , Ratos , Animais , Ratos Wistar , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Fígado , Rim , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...