Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 13618, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541158

RESUMO

Spermatogenesis is a differentiation process that requires dramatic changes to DNA architecture, a process governed in part by Transition Nuclear Proteins 1 and 2 (TNP1 and TNP2). Translation of Tnp1 and Tnp2 mRNAs is temporally disengaged from their transcription. We hypothesized that RNA regulatory proteins associate specifically with Tnp mRNAs to control the delayed timing of their translation. To identify potential regulatory proteins, we isolated endogenous mRNA/protein complexes from testis extract and identified by mass spectrometry proteins that associated with one or both Tnp transcripts. Five proteins showed strong association with Tnp transcripts but had low signal when Actin mRNA was isolated. We visualized the expression patterns in testis sections of the five proteins and found that each of the proteins was detected in germ cells at the appropriate stages to regulate Tnp RNA expression.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Animais , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/genética , Células Germinativas/metabolismo , Masculino , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos DBA , Proteínas Nucleares/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Testículo/fisiologia , Fatores de Transcrição/metabolismo
2.
PLoS One ; 10(2): e0118322, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25714374

RESUMO

Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation.


Assuntos
Bactérias/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Bactérias/genética , Evolução Biológica , Técnicas Biossensoriais , Dosagem de Genes , Engenharia Genética , Aptidão Genética , Variação Genética , Modelos Biológicos , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...