Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(17): e100, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31318974

RESUMO

The majority of the proteins involved in processing of DNA double-strand breaks (DSBs) accumulate at the damage sites. Real-time imaging and analysis of these processes, triggered by the so-called microirradiation using UV lasers or heavy particle beams, yielded valuable insights into the underlying DSB repair mechanisms. To study the temporal organization of DSB repair responses triggered by a more clinically-relevant DNA damaging agent, we developed a system coined X-ray multi-microbeam microscope (XM3), capable of simultaneous high dose-rate (micro)irradiation of large numbers of cells with ultra-soft X-rays and imaging of the ensuing cellular responses. Using this setup, we analyzed the changes in real-time kinetics of MRE11, MDC1, RNF8, RNF168 and 53BP1-proteins involved in the signaling axis of mammalian DSB repair-in response to X-ray and UV laser-induced DNA damage, in non-cancerous and cancer cells and in the presence or absence of a photosensitizer. Our results reveal, for the first time, the kinetics of DSB signaling triggered by X-ray microirradiation and establish XM3 as a powerful platform for real-time analysis of cellular DSB repair responses.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Imagem com Lapso de Tempo/métodos , Raios X , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Humanos , Proteína Homóloga a MRE11 , Microscopia Eletrônica de Varredura , Osteossarcoma/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta
2.
DNA Repair (Amst) ; 12(1): 38-45, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23237939

RESUMO

In S and G2 phase mammalian cells DNA double strand breaks (DSBs) can potentially be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). Results of several studies suggest that these two mechanistically distinct repair pathways can compete for DNA ends. Because HR and NHEJ differ with respect to error susceptibility, generation of chromosome rearrangements, which are potentially carcinogenic products of DSB repair, may depend on the pathway choice. To investigate this hypothesis, the influence of HR and NHEJ inhibition on the frequencies of chromosome aberrations in G2 phase cells was investigated. SW-1573 and RKO cells were treated with mild (41 °C) hyperthermia in order to disable HR and/or NU7441/cisplatin to inactivate NHEJ and frequencies of chromosomal fragments (resulting from unrepaired DSBs) and translocations (products of erroneous DSB rejoining) were studied using premature chromosome condensation (PCC) combined with fluorescence in situ hybridization (FISH). It is shown here that temporary inhibition of HR by hyperthermia results in increased frequency of ionizing-radiation (IR)-induced chromosomal translocations and that this effect is abrogated by NU7441- or cisplatin-mediated inhibition of NHEJ. The results suggest that in the absence of HR, DSB repair is shifted to the error-prone NHEJ pathway resulting in increased frequencies of chromosomal rearrangements. These results might be of consequence for clinical cancer treatment approaches that aim at inhibition of one or more DSB repair pathways.


Assuntos
Reparo do DNA por Junção de Extremidades , Recombinação Homóloga , Temperatura Alta , Reparo de DNA por Recombinação , Animais , Linhagem Celular Tumoral , Cromonas , Cisplatino/toxicidade , Quebras de DNA de Cadeia Dupla , Fase G2 , Raios gama , Humanos , Camundongos , Morfolinas , Tolerância a Radiação , Translocação Genética/efeitos dos fármacos , Translocação Genética/efeitos da radiação
3.
Oncol Rep ; 27(3): 769-74, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22200791

RESUMO

Ionizing radiation-induced foci (IRIF) of DNA repair-related proteins accumulated at DNA double-strand break (DSB) sites have been suggested to be a powerful biodosimetric tool. However, the relationship between IRIF induction and biologically relevant endpoints, such as cell death and formation of chromosome rearrangements is less clear, especially for high linear energy transfer (LET) radiation. It is thus not sufficiently established whether IRIF are valid indicators of biological effectiveness of the various radiation types. This question is more significant in light of the recent advancements in light ion-beam and radionuclide therapy. Dose-effect relationships were determined for the induction of DNA-DSBs, chromosome aberrations and reproductive cell death in cultured SW-1573 cells irradiated with γ-rays from a Cs-137 source or with α-particles from an Am-241 source. Values of relative biological effectiveness (RBE) of the high LET α-particles were derived for these effects. DNA-DSB were detected by scoring of γ-H2AX foci, chromosome aberrations by fragments and translocations using premature chromosome condensation and cell survival by colony formation. Analysis of dose-effect relations was based on the linear-quadratic model. Except for the survival curves, for other effects no significant contribution was derived of the quadratic term in the range of doses up to 2 Gy of γ-rays. Calculated RBE values derived for the linear component of dose-effect relations for γ-H2AX foci, cell reproductive death, chromosome fragments and colour junctions are 1.0±0.3, 14.7±5.1, 15.3±5.9 and 13.3±6.0, respectively. RBE values calculated at a certain biological effect level are 1, 4, 13 and 13, respectively. The RBE values derived from the LQ model are preferred as they are based on clinically relevant doses. The results show that with low LET radiation only a small fraction of the numerous DNA-DSBs yield chromosome damage and reproductive cell death. It is concluded that many of the chromosomal aberrations detected by premature chromosome condensation do not cause reproductive cell death. Furthermore, RBE values for DNA-DSB detectable by γ-H2AX foci shortly after irradiation, provide no information relevant to applications of high LET radiation in radiotherapy. The RBE values of chromosome aberrations assessed by premature chromosome condensation are close to the value for reproductive cell death. This suggests possible relevance to assess RBE values for radiotherapy with high LET ions.


Assuntos
Partículas alfa/uso terapêutico , Morte Celular/efeitos da radiação , Divisão Celular/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Quebras de DNA de Cadeia Dupla , DNA de Neoplasias/efeitos da radiação , Transferência Linear de Energia/efeitos da radiação , Neoplasias Pulmonares/radioterapia , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama/uso terapêutico , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Eficiência Biológica Relativa
4.
Radiat Oncol ; 6: 64, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21651780

RESUMO

BACKGROUND: Various types of radiation effects in mammalian cells have been studied with the aim to predict the radiosensitivity of tumours and normal tissues, e.g. DNA double strand breaks (DSB), chromosome aberrations and cell reproductive inactivation. However, variation in correlations with clinical results has reduced general application. An additional type of information is required for the increasing application of high-LET radiation in cancer therapy: the Relative Biological Effectiveness (RBE) for effects in tumours and normal tissues. Relevant information on RBE values might be derived from studies on cells in culture. METHODS: To evaluate relationships between DNA-DSB, chromosome aberrations and the clinically most relevant effect of cell reproductive death, for ionizing radiations of different LET, dose-effect relationships were determined for the induction of these effects in cultured SW-1573 cells irradiated with gamma-rays from a Cs-137 source or with α-particles from an Am-241 source. RBE values were derived for these effects. Ionizing radiation induced foci (IRIF) of DNA repair related proteins, indicative of DSB, were assessed by counting gamma-H2AX foci. Chromosome aberration frequencies were determined by scoring fragments and translocations using premature chromosome condensation. Cell survival was measured by colony formation assay. Analysis of dose-effect relations was based on the linear-quadratic model. RESULTS: Our results show that, although both investigated radiation types induce similar numbers of IRIF per absorbed dose, only a small fraction of the DSB induced by the low-LET gamma-rays result in chromosome rearrangements and cell reproductive death, while this fraction is considerably enhanced for the high-LET alpha-radiation. Calculated RBE values derived for the linear components of dose-effect relations for gamma-H2AX foci, cell reproductive death, chromosome fragments and colour junctions are 1.0 ± 0.3, 14.7 ± 5.1, 15.3 ± 5.9 and 13.3 ± 6.0 respectively. CONCLUSIONS: These results indicate that RBE values for IRIF (DNA-DSB) induction provide little valid information on other biologically-relevant end points in cells exposed to high-LET radiations. Furthermore, the RBE values for the induction of the two types of chromosome aberrations are similar to those established for cell reproductive death. This suggests that assays of these aberrations might yield relevant information on the biological effectiveness in high-LET radiotherapy.


Assuntos
Aberrações Cromossômicas , Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA/efeitos da radiação , Partículas alfa , Amerício/farmacologia , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Radioisótopos de Césio , Cromossomos/efeitos da radiação , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Neoplasias Pulmonares/radioterapia , Radioterapia/métodos
5.
Proc Natl Acad Sci U S A ; 108(24): 9851-6, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21555554

RESUMO

Defective homologous recombination (HR) DNA repair imposed by BRCA1 or BRCA2 deficiency sensitizes cells to poly (ADP-ribose) polymerase (PARP)-1 inhibition and is currently exploited in clinical treatment of HR-deficient tumors. Here we show that mild hyperthermia (41-42.5 °C) induces degradation of BRCA2 and inhibits HR. We demonstrate that hyperthermia can be used to sensitize innately HR-proficient tumor cells to PARP-1 inhibitors and that this effect can be enhanced by heat shock protein inhibition. Our results, obtained from cell lines and in vivo tumor models, enable the design of unique therapeutic strategies involving localized on-demand induction of HR deficiency, an approach that we term induced synthetic lethality.


Assuntos
Proteína BRCA2/metabolismo , Temperatura Alta , Poli(ADP-Ribose) Polimerases/metabolismo , Recombinação Genética/genética , Animais , Proteína BRCA2/genética , Benzoquinonas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/efeitos da radiação , Feminino , Células HeLa , Humanos , Immunoblotting , Lactamas Macrocíclicas/farmacologia , Camundongos , Camundongos Nus , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Quinazolinas/farmacologia , Interferência de RNA , Ratos , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/efeitos da radiação , Transplante Heterólogo , Carga Tumoral/efeitos dos fármacos
6.
Cancer Cell ; 18(3): 244-57, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20832752

RESUMO

Kinases execute pivotal cellular functions and are therefore widely investigated as potential targets in anticancer treatment. Here we analyze the kinase gene expression profiles of various tumor types and reveal the wee1 kinase to be overexpressed in glioblastomas. We demonstrate that WEE1 is a major regulator of the G(2) checkpoint in glioblastoma cells. Inhibition of WEE1 by siRNA or small molecular compound in cells exposed to DNA damaging agents results in abrogation of the G(2) arrest, premature termination of DNA repair, and cell death. Importantly, we show that the small-molecule inhibitor of WEE1 sensitizes glioblastoma to ionizing radiation in vivo. Our results suggest that inhibition of WEE1 kinase holds potential as a therapeutic approach in treatment of glioblastoma.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Mitose/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Tirosina Quinases/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Dano ao DNA , Reparo do DNA , Modelos Animais de Doenças , Fase G2/fisiologia , Perfilação da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Camundongos , Camundongos Nus , Análise em Microsséries , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/genética , Pirimidinas/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Oncol Lett ; 1(4): 765-769, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966377

RESUMO

Agents that enhance the effectiveness of ionizing radiation have been investigated over many decades. A relatively new group of potential radiosensitizers consists of agents that inhibit histone acetyltransferases (HATs). This study evaluated the radiosensitizing properties of the HAT inhibitor anacardic acid (AA), used at a low-toxic concentration of 100 µM in V79, SW1573 and U2OS cells. Radiation survival curves were analyzed according to the linear quadratic model. Significant radiosensitization by AA was only obtained in U2OS cells. AA significantly increased the value of the linear parameter α, but not of the quadratic parameter ß, indicating fixation of potentially lethal damage and an intact repair function of sublethal damage. The increase of the α value was also observed in SW1573 cells, but was not accompanied by a significant radiosensitization. A likely explanation for the enhancement of the α value may be an increase in the amount of lethal lesions due to the compacted chromatin structure. Despite the conflicting results of the radiosensitizing effect of AA in the three cell lines tested, the ability of AA to increase the α value suggests potential advantages for clinical application.

8.
Eur Biophys J ; 38(6): 721-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19495740

RESUMO

Localized induction of DNA damage is a valuable tool for studying cellular DNA damage responses. In recent decades, methods have been developed to generate DNA damage using radiation of various types, including photons and charged particles. Here we describe a simple ultrasoft X-ray multi-microbeam system for high dose-rate, localized induction of DNA strand breaks in cells at spatially and geometrically adjustable sites. Our system can be combined with fixed- and live-cell microscopy to study responses of cells to DNA damage.


Assuntos
Dano ao DNA/efeitos da radiação , Reparo do DNA , DNA/efeitos da radiação , Raios X , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde , Humanos , Imuno-Histoquímica/métodos , Microscopia de Fluorescência/métodos
9.
J Cell Biol ; 185(4): 577-86, 2009 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-19451271

RESUMO

Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-alpha, HP1-beta, and HP1-gamma are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in human cells. This response to DNA damage requires the chromo shadow domain of HP1 and is independent of H3K9 trimethylation and proteins that detect UV damage and DSBs. Loss of HP1 results in high sensitivity to UV light and ionizing radiation in the nematode Caenorhabditis elegans, indicating that HP1 proteins are essential components of DNA damage response (DDR) systems. Analysis of single and double HP1 mutants in nematodes suggests that HP1 homologues have both unique and overlapping functions in the DDR. Our results show that HP1 proteins are important for DNA repair and may function to reorganize chromatin in response to damage.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Animais , Caenorhabditis elegans , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA/efeitos da radiação , Reparo do DNA , Histonas/metabolismo , Mutação , Isoformas de Proteínas , Radiação Ionizante , Raios Ultravioleta/efeitos adversos
10.
Methods Mol Biol ; 463: 309-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18951175

RESUMO

DNA double-strand breaks (DSBs) are among the most dangerous types of DNA damage. Unrepaired, DSBs may lead to cell death, and when misrejoined, they can result in potentially carcinogenic chromosome rearrangements. The induction of DSBs and their repair take place in a chromatin microenvironment. Therefore, understanding and describing the dynamics of DSB-containing chromatin is of crucial importance for understanding interactions among DSBs and their repair. Recent developments have made it possible to study ionizing radiation-induced foci of DSB repair proteins in vivo. In this chapter, we describe techniques that can be applied to visualize and analyze the spatio-temporal dynamics of DSB-containing chromatin domains in mammalian cell nuclei. Analogous procedures may also be applied to the analysis of mobility of other intranuclear structures in living cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Técnicas Genéticas , Microscopia de Contraste de Fase/métodos , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromossomos/ultraestrutura , Dano ao DNA , Reparo do DNA , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mamíferos , Fatores de Tempo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
11.
Nat Methods ; 5(3): 261-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18309310

RESUMO

Understanding how cells maintain genome integrity when challenged with DNA double-strand breaks (DSBs) is of major importance, particularly since the discovery of multiple links of DSBs with genome instability and cancer-predisposition disorders. Ionizing radiation is the agent of choice to produce DSBs in cells; however, targeting DSBs and monitoring changes in their position over time can be difficult. Here we describe a procedure for induction of easily recognizable linear arrays of DSBs in nuclei of adherent eukaryotic cells by exposing the cells to alpha particles from a small Americium source (Box 1). Each alpha particle traversing the cell nucleus induces a linear array of DSBs, typically 10-20 DSBs per 10 mum track length. Because alpha particles cannot penetrate cell-culture plastic or coverslips, it is necessary to irradiate cells through a Mylar membrane. We describe setup and irradiation procedures for two types of experiments: immunodetection of DSB response proteins in fixed cells grown in Mylar-bottom culture dishes (Option A) and detection of fluorescently labeled DSB-response proteins in living cells irradiated through a Mylar membrane placed on top of the cells (Option B). Using immunodetection, recruitment of repair proteins to individual DSB sites as early as 30 s after irradiation can be detected. Furthermore, combined with fluorescence live-cell microscopy of fluorescently tagged DSB-response proteins, this technique allows spatiotemporal analysis of the DSB repair response in living cells. Although the procedures might seem a bit intimidating, in our experience, once the source and the setup are ready, it is easy to obtain results. Because the live-cell procedure requires more hands-on experience, we recommend starting with the fixed-cell application.


Assuntos
Partículas alfa , Dano ao DNA , DNA/efeitos da radiação , Amerício , Linhagem Celular Tumoral , Humanos
12.
PLoS One ; 3(1): e1503, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18231590

RESUMO

BACKGROUND: Polyglutamine expansion disorders are caused by an expansion of the polyglutamine (polyQ) tract in the disease related protein, leading to severe neurodegeneration. All polyQ disorders are hallmarked by the presence of intracellular aggregates containing the expanded protein in affected neurons. The polyQ disorder SpinoCerebellar Ataxia 1 (SCA1) is caused by a polyQ-expansion in the ataxin-1 protein, which is thought to lead to nuclear aggregates. METHODOLOGY/PRINCIPAL FINDINGS: Using advanced live cell fluorescence microscopy and a filter retardation assay we show that nuclear accumulations formed by polyQ-expanded ataxin-1 do not resemble aggregates of other polyQ-expanded proteins. Instead of being static, insoluble aggregates, nuclear accumulations formed by the polyQ-expanded ataxin-1 showed enhanced intracellular kinetics as compared to wild-type ataxin-1. During mitosis, ataxin-1 accumulations redistributed equally among daughter cells, in contrast to polyQ aggregates. Interestingly, polyQ expansion did not affect the nuclear-cytoplasmic shuttling of ataxin-1 as proposed before. CONCLUSIONS/SIGNIFICANCE: These results indicate that polyQ expansion does not necessarily lead to aggregate formation, and that the enhanced kinetics may affect the nuclear function of ataxin-1. The unexpected findings for a polyQ-expanded protein and their consequences for ongoing SCA1 research are discussed.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Ataxias Espinocerebelares/metabolismo , Ataxina-1 , Ataxinas , Sequência de Bases , Divisão Celular , Núcleo Celular/metabolismo , Primers do DNA , Humanos , Cinética , Microscopia Confocal , Microscopia de Fluorescência
14.
Nat Methods ; 3(11): 939-45, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17060918

RESUMO

Molecular oxygen is the primary oxidant in biological systems. The ultimate destination of oxygen in vivo is the mitochondria where it is used in oxidative phosphorylation. The ability of this process to produce an amount of high-energy phosphates adequate to sustain life highly depends on the available amount of oxygen. Despite a vast array of techniques to measure oxygen, major (patho)physiological questions remain unanswered because of the unavailability of quantitative techniques to measure mitochondrial oxygen in situ. Here we demonstrate that mitochondrial PO(2) can be directly measured in living cells by harnessing the delayed fluorescence of endogenous protoporphyrin IX (PpIX), thereby providing a technique with the potential for a wide variety of applications. We applied this technique to different cell lines (V-79 Chinese hamster lung fibroblasts, HeLa cells and IMR 32-K1 neuroblastoma cells) and present the first direct measurements of the oxygen gradient between the mitochondria and the extracellular volume.


Assuntos
Mitocôndrias/metabolismo , Oxigênio/metabolismo , Protoporfirinas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cricetinae , Fluorescência , Células HeLa , Humanos , Microscopia de Fluorescência , Mitocôndrias/química , Oxigênio/análise , Consumo de Oxigênio , Protoporfirinas/química , Sensibilidade e Especificidade
16.
Science ; 303(5654): 92-5, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14704429

RESUMO

Interactions between ends from different DNA double-strand breaks (DSBs) can produce tumorigenic chromosome translocations. Two theories for the juxta-position of DSBs in translocations, the static "contact-first" and the dynamic "breakage-first" theory, differ fundamentally in their requirement for DSB mobility. To determine whether or not DSB-containing chromosome domains are mobile and can interact, we introduced linear tracks of DSBs in nuclei. We observed changes in track morphology within minutes after DSB induction, indicating movement of the domains. In a subpopulation of cells, the domains clustered. Juxtaposition of different DSB-containing chromosome domains through clustering, which was most extensive in G1 phase cells, suggests an adhesion process in which we implicate the Mre11 complex. Our results support the breakage-first theory to explain the origin of chromosomal translocations.


Assuntos
Quebra Cromossômica , Cromossomos Humanos/metabolismo , Dano ao DNA , DNA/metabolismo , Histonas/metabolismo , Partículas alfa , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Células CHO , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Cromossomos de Mamíferos/metabolismo , Cricetinae , Cricetulus , DNA/efeitos da radiação , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Fase G1 , Fase G2 , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Fosforilação , Rad51 Recombinase , Fase S , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...