Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(38): 13846-51, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201963

RESUMO

It is well known that high hydrostatic pressures can induce the unfolding of proteins. The physical underpinnings of this phenomenon have been investigated extensively but remain controversial. Changes in solvation energetics have been commonly proposed as a driving force for pressure-induced unfolding. Recently, the elimination of void volumes in the native folded state has been argued to be the principal determinant. Here we use the cavity-containing L99A mutant of T4 lysozyme to examine the pressure-induced destabilization of this multidomain protein by using solution NMR spectroscopy. The cavity-containing C-terminal domain completely unfolds at moderate pressures, whereas the N-terminal domain remains largely structured to pressures as high as 2.5 kbar. The sensitivity to pressure is suppressed by the binding of benzene to the hydrophobic cavity. These results contrast to the pseudo-WT protein, which has a residual cavity volume very similar to that of the L99A-benzene complex but shows extensive subglobal reorganizations with pressure. Encapsulation of the L99A mutant in the aqueous nanoscale core of a reverse micelle is used to examine the hydration of the hydrophobic cavity. The confined space effect of encapsulation suppresses the pressure-induced unfolding transition and allows observation of the filling of the cavity with water at elevated pressures. This indicates that hydration of the hydrophobic cavity is more energetically unfavorable than global unfolding. Overall, these observations point to a range of cooperativity and energetics within the T4 lysozyme molecule and illuminate the fact that small changes in physical parameters can significantly alter the pressure sensitivity of proteins.


Assuntos
Bacteriófago T4/enzimologia , Muramidase/química , Desdobramento de Proteína , Substituição de Aminoácidos , Bacteriófago T4/genética , Interações Hidrofóbicas e Hidrofílicas , Muramidase/genética , Mutação de Sentido Incorreto , Pressão , Estrutura Terciária de Proteína
2.
J Phys Chem B ; 118(8): 2020-31, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24506449

RESUMO

The encapsulation of proteins and nucleic acids within the nanoscale water core of reverse micelles has been used for over 3 decades as a vehicle for a wide range of investigations including enzymology, the physical chemistry of confined spaces, protein and nucleic acid structural biology, and drug development and delivery. Unfortunately, the static and dynamical aspects of the distribution of water in solutions of reverse micelles complicate the measurement and interpretation of fundamental parameters such as pH. This is a severe disadvantage in the context of (bio)chemical reactions and protein structure and function, which are generally highly sensitive to pH. There is a need to more fully characterize and control the effective pH of the reverse micelle water core. The buffering effect of titratable head groups of the reverse micelle surfactants is found to often be the dominant variable defining the pH of the water core. Methods for measuring the pH of the reverse micelle aqueous interior using one-dimensional (1)H and two-dimensional heteronuclear NMR spectroscopy are described. Strategies for setting the effective pH of the reverse micelle water core are demonstrated. The exquisite sensitivity of encapsulated proteins to the surfactant, water content, and pH of the reverse micelle is also addressed. These results highlight the importance of assessing the structural fidelity of the encapsulated protein using multidimensional NMR before embarking upon a detailed structural and biophysical characterization.


Assuntos
Micelas , Água/química , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Estabilidade Proteica , Proteínas/química , Tensoativos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...