Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 2): 132956, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848838

RESUMO

Free-standing films have been obtained by drop-casting cellulose-glycerol mixtures (up to 50 wt% glycerol) dissolved in trifluoroacetic acid and trifluoroacetic anhydride (TFA:TFAA, 2:1, v:v). A comprehensive examination of the optical, structural, mechanical, thermal, hydrodynamic, barrier, migration, greaseproof, and biodegradation characteristics of the films was conducted. The resulting cellulose-glycerol blends exhibited an amorphous molecular structure and a reinforced H-bond network, as evidenced by X-ray diffraction analysis and infrared spectroscopy, respectively. The inclusion of glycerol exerted a plasticizing influence on the mechanical properties of the films, while keeping their transparency. Hydrodynamic and barrier properties were assessed through water uptake and water vapor/oxygen transmission rates, respectively, and obtained values were consistent with those of other cellulose-based materials. Furthermore, overall migration levels were below European regulation limits, as stated by using Tenax® as a dry food simulant. In addition, these bioplastics demonstrated good greaseproof performance, particularly at high glycerol content, and potential as packaging materials for bakery products. Biodegradability assessments were carried out by measuring the biological oxygen demand in seawater and high biodegradation rates induced by glycerol were observed.


Assuntos
Celulose , Embalagem de Alimentos , Glicerol , Embalagem de Alimentos/métodos , Glicerol/química , Celulose/química , Plásticos/química , Plastificantes/química , Vapor , Água/química , Biodegradação Ambiental , Plásticos Biodegradáveis/química
2.
Data Brief ; 54: 110490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764452

RESUMO

This article presents analyzed data on the antimicrobial, barrier, and mechanical properties inherent to films created by blending carrot pomace with wheat gluten and polyglycerol-3 plasticizer and combined with varying contents (0 wt.%, 3 wt.%, and 5 wt.%) of eugenol, a natural antimicrobial compound derived from essential oils. The integration of carrot pomace, wheat gluten, plasticizer, and eugenol involved meticulous mortar and pestle processing, ensuring a homogenous blend. Subsequently, the mixture was compression-molded in a hydraulic press to fabricate the films. Standard bacteria strains-Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 6538-are used in the antimicrobial evaluation, and antimicrobial efficacy is measured using OD600 measurements. Water vapor permeability (WVP) measurement effectively defines the films' potential to prevent water vapor infiltration. Mechanical properties are assessed by determining elastic modulus, tensile strength, and elongation at break, which together reveal the films' adaptive flexibility and durability. The dataset presented herein holds substantial promise for food packaging applications. Researchers in the food packaging industry can leverage the antimicrobial and barrier property data to design novel packaging materials, potentially enhancing shelf-life and food safety. Engineers and material scientists can utilize the mechanical properties data to develop structurally robust and flexible materials.

3.
Sci Rep ; 14(1): 10988, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744852

RESUMO

Investigating biodegradable and biocompatible materials for electronic applications can lead to tangible outcomes such as developing green-electronic devices and reducing the amount of e-waste. The proposed emulsion-based conducting ink formulation takes into consideration circular economy and green principles throughout the entire process, from the selection of materials to the production process. The ink is formulated using the biopolymer polylactic acid dissolved in a sustainable solvent mixed with water, along with conductive carbon nanotubes (CNTs) and silver flakes as fillers. Hybrid conductive fillers can lower the percolation threshold of the ink and the production costs, while maintaining excellent electrical properties. The coating formed after the deposition of the ink, undergoes isothermal treatment at different temperatures and durations to improve its adhesion and electrical properties. The coating's performance was evaluated by creating an eight-finger interdigitated sensor using a Voltera PCB printer. The sensor demonstrates exceptional performance when exposed to various loading and unloading pressures within the 0.2-500.0 kPa range. The results show a consistent correlation between the change in electrical resistance and the stress caused by the applied load. The ink is biodegradable in marine environments, which helps avoiding its accumulation in the ecosystem over time.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38603548

RESUMO

In this study, hydrogels were produced using a Schiff base reaction between two hyaluronic acid derivatives: one containing aldehyde groups (HA-Ald) and the other holding a diethylenetriamine with terminal amino groups (HA-DETA). The DETA portion promotes the in situ growth, complexation, and stabilization of silver nanoparticles (AgNPs), eliminating the need for external reducing agents. The reaction between HA-DETA and HA-Ald leads to the formation of imine bonds, which results in dynamically pH-responsive cross-linking. While the DETA capping ability helped in embedding the AgNPs, the on/off pH environmental responsivity of the hydrogel allows for a controlled and on-demand release of the drug, mainly when bacterial infections cause pH variation of the wound bed. The injectable hydrogels resulted in being highly compatible in contact with blood red cells, fibroblasts, and keratinocytes and capable of having a proliferative effect on an in vitro wound scratch model. The pH-responsive hydrogels showed proper antibacterial activity againstPseudomonas aeruginosaandStaphylococcus aureus, common bacterial strains presented in wound infections. Finally, in vivo wound model studies demonstrated an overall speeding up in the wound healing rate and advanced wound conditions in the experimental group treated with the hydrogels compared to control samples.

5.
ACS Omega ; 9(1): 1242-1250, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222589

RESUMO

The development of this work lies in the relevant interest in epoxy resins, which, despite their wide use, do not meet the requirements for sustainable materials. Therefore, the proposed approach considers the need to develop environmentally friendly systems, in terms of both the starting material and the synthetic method applied as well as in terms of end-of-life. The above issues were taken into account by (i) using a monomer from renewable sources, (ii) promoting the formation of dynamic covalent bonds, allowing for material reprocessing, and (iii) evaluating the degradability of the material. Indeed, an epoxy derived from cardanol was used, which, for the first time, was applied in the development of a vitrimer system. The exploitation of a diboronic ester dithiol ([2,2'-(1,4-phenylene)-bis[4-mercaptan-1,3,2-dioxaborolane], DBEDT) as a cross-linker allowed the cross-linking reaction to be carried out without the use of solvents and catalysts through a thiol-epoxy "click" mechanism. The dynamicity of the network was demonstrated by gel fraction experiments and rheological and DMA measurements. In particular, the formation of a vitrimer was highlighted, characterized by low relaxation times (around 4 s at 70 °C) and an activation energy of ca. 48 kJ/mol. Moreover, the developed material, which is easily biodegradable in seawater, was found to show promising flame reaction behavior. Preliminary experiments demonstrated that, unlike an epoxy resin prepared from the same monomer and using a classical cross-linker, our boron-containing material exhibited no dripping under combustion conditions, a phenomenon that will allow this novel biobased system to be widely used.

6.
ACS Appl Mater Interfaces ; 16(3): 3093-3105, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206310

RESUMO

As is known, carbon nanotubes favor cell growth in vitro, although the underlying mechanisms are not yet fully elucidated. In this study, we explore the hypothesis that electrostatic fields generated at the interface between nonexcitable cells and appropriate scaffold might favor cell growth by tuning their membrane potential. We focused on primary human fibroblasts grown on electrospun polymer fibers (poly(lactic acid)─PLA) with embedded multiwall carbon nanotubes (MWCNTs). The MWCNTs were functionalized with either the p-methoxyphenyl (PhOME) or the p-acetylphenyl (PhCOMe) moiety, both of which allowed uniform dispersion in a solvent, good mixing with PLA and the consequent smooth and homogeneous electrospinning process. The inclusion of the electrically conductive MWCNTs in the insulating PLA matrix resulted in differences in the surface potential of the fibers. Both PLA and PLA/MWCNT fiber samples were found to be biocompatible. The main features of fibroblasts cultured on different substrates were characterized by scanning electron microscopy, immunocytochemistry, Rt-qPCR, and electrophysiology revealing that fibroblasts grown on PLA/MWCNT reached a healthier state as compared to pure PLA. In particular, we observed physiological spreading, attachment, and Vmem of fibroblasts on PLA/MWCNT. Interestingly, the electrical functionalization of the scaffold resulted in a more suitable extracellular environment for the correct biofunctionality of these nonexcitable cells. Finally, numerical simulations were also performed in order to understand the mechanism behind the different cell behavior when grown either on PLA or PLA/MWCNT samples. The results show a clear effect on the cell membrane potential, depending on the underlying substrate.


Assuntos
Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Potenciais da Membrana , Poliésteres/química , Polímeros/química , Fibroblastos
7.
Int J Biol Macromol ; 257(Pt 2): 128560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061505

RESUMO

Ureteral stents are among the most frequently used human implants, with urothelium trauma, blood clots, and bacterial colonization being their main reasons for failure. In this study, berberine-loaded zein (ZB) nanoparticles with high drug encapsulation efficiency (>90 %) were fabricated via electrospray on flat and 3D stainless steel structures. Physico-chemical characterization revealed that the ZB nanoparticles created a highly hydrophilic, antioxidant, and scratch-resistant continuous coating over the metal structure. Results showed that the drug release rate was faster at neutral pH (i.e., PBS pH 7.4) than in an artificial urine medium (pH 5.3) due to the different swelling behavior of the zein polymeric matrix. In vitro evaluation of ZB particles onto human dermal fibroblasts and blood cells demonstrated good cell proliferation and enhanced anti-thrombotic properties compared to bare stainless steel. The ability of the electrosprayed zein particles to resist bacterial adherence and proliferation was evaluated with Gram-negative (Escherichia coli) bacteria, showing high inhibition rates (-29 % and -46 % for empty and berberine-loaded particles, respectively) compared to the medical-grade metal substrates. Overall, the proposed composite coating fulfilled the requirements for ureteral applications, and can advance the development of innovative biocompatible, biodegradable, and antibacterial coatings for drug-eluting stents.


Assuntos
Berberina , Nanopartículas , Zeína , Humanos , Zeína/química , Aço Inoxidável , Antibacterianos/farmacologia , Stents , Nanopartículas/química , Metais
8.
Macromol Biosci ; 24(2): e2300349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800281

RESUMO

Diabetes is rising as one of the most diffused diseases of the century with the related urgent necessity to face its systemic and local effects on the patients, such as cardiovascular problems, degeneration of limbs, and dysfunction of the wound healing process. The diffusion of leg ulcers has been estimated to be 1.51 for 1000 population, and these non-resolved wounds can produce several social, economic, and mental health issues in diabetic patients. At the same time, these people experience neuropathic pain that causes morbidity and a further decrease in their quality of life. Here, a new study is presented where asodium alginate/Polyvinylpyrrolidone-Iodine complex (PVPI)-based wound dressing is combined with the Frequency Rhythmic Electrical Modulation System (FREMS) technology, an established medical device for the treatment of neuropathic pain and diabetic ulcers. The produced Alginate/PVPI-based films are characterized in terms of morphology, chemistry, wettability, bio-/hemo-compatibility, and clotting capacity. Next, the Alginate/PVPI-based films are used together with FREMS technology in diabetic mice models, and synergism of their action in the wound closure rate and anti-inflammatory properties is found. Hence, how the combination of electrical neurostimulation devices and advanced wound dressings can be a new approach to improve chronic wound treatment is demonstrated.


Assuntos
Diabetes Mellitus Experimental , Neuralgia , Humanos , Animais , Camundongos , Povidona-Iodo/química , Alginatos/química , Qualidade de Vida , Diabetes Mellitus Experimental/terapia
9.
Sensors (Basel) ; 23(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005674

RESUMO

Herein, the ability of highly porous colorimetric indicators to sense volatile and biogenic amine vapors in real time is presented. Curcumin-loaded polycaprolactone porous fiber mats are exposed to various concentrations of off-flavor compounds such as the volatile amine trimethylamine, and the biogenic amines cadaverine, putrescine, spermidine, and histamine, in order to investigate their colorimetric response. CIELAB color space analysis demonstrates that the porous fiber mats can detect the amine vapors, showing a distinct color change in the presence of down to 2.1 ppm of trimethylamine and ca. 11.0 ppm of biogenic amines, surpassing the limit of visual perception in just a few seconds. Moreover, the color changes are reversible either spontaneously, in the case of the volatile amines, or in an assisted way, through interactions with an acidic environment, in the case of the biogenic amines, enabling the use of the same indicator several times. Finally, yet importantly, the strong antioxidant activity of the curcumin-loaded fibers is successfully demonstrated through DPPH● and ABTS● radical scavenging assays. Through such a detailed study, we prove that the developed porous mats can be successfully established as a reusable smart system in applications where the rapid detection of alkaline vapors and/or the antioxidant activity are essential, such as food packaging, biomedicine, and environmental protection.


Assuntos
Antioxidantes , Curcumina , Colorimetria , Aminas Biogênicas/análise , Polímeros
10.
ACS Appl Electron Mater ; 5(9): 5050-5060, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779887

RESUMO

Printed circuit boards (PCBs) physically support and connect electronic components to the implementation of complex circuits. The most widespread insulating substrate that also acts as a mechanical support in PCBs is commercially known as FR4, and it is a glass-fiber-reinforced epoxy resin laminate. FR4 has exceptional dielectric, mechanical, and thermal properties. However, it was designed without considering sustainability and end-of-life aspects, heavily contributing to the accumulation of electronic waste in the environment. Thus, greener alternatives that can be reprocessed, reused, biodegraded, or composted at the end of their function are needed. This work presents the development and characterization of a PCB substrate based on poly(lactic acid) and cotton fabric, a compostable alternative to the conventional FR4. The substrate has been developed by compression molding, a process compatible with the polymer industry. We demonstrate that conductive silver ink can be additively printed on the substrate's surface, as its morphology and wettability are similar to those of FR4. For example, the compostable PCB's water contact angle is 72°, close to FR4's contact angle of 64°. The developed substrate can be thermoformed to curved surfaces at low temperatures while preserving the conductivity of the silver tracks. The green substrate has a dielectric constant comparable to that of the standard FR4, showing a value of 5.6 and 4.6 at 10 and 100 kHz, respectively, which is close to the constant value of 4.6 of FR4. The substrate is suitable for microdrilling, a fundamental process for integrating electronic components to the PCB. We implemented a proof-of-principle circuit to control the blinking of LEDs on top of the PCB, comprising resistors, capacitors, LEDs, and a dual in-line package circuit timer. The developed PCB substrate represents a sustainable alternative to standard FR4 and could contribute to the reduction of the overwhelming load of electronic waste in landfills.

11.
Front Bioeng Biotechnol ; 11: 1225722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650039

RESUMO

Introduction: Recently, mycelia of Ganoderma lucidum and Pleurotus ostreatus, edible fungi, have been characterized in vitro as self-growing biomaterials for tissue engineering since they are constituted of interconnected fibrous networks resembling the dermal collagen structure. Aim: This work aims to investigate the biopharmaceutical properties of G. lucidum and P. ostreatus mycelia to prove their safety and effectiveness in tissue engineering as dermal substitutes. Methods: The mycelial materials were characterized using a multidisciplinary approach, including physicochemical properties (morphology, thermal behavior, surface charge, and isoelectric point). Moreover, preclinical properties such as gene expression and in vitro wound healing assay have been evaluated using fibroblasts. Finally, these naturally-grown substrates were applied in vivo using a murine burn/excisional wound model. Conclusions: Both G. lucidum and P. ostreatus mycelia are biocompatible and able to safely and effectively enhance tissue repair in vivo in our preclinical model.

12.
ACS Appl Bio Mater ; 6(8): 3103-3116, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37493659

RESUMO

Natural polymers from organic wastes have gained increasing attention in the biomedical field as resourceful second raw materials for the design of biomedical devices which can perform a specific bioactive function and eventually degrade without liberating toxic residues in the surroundings. In this context, patches and bandages, that need to support the skin wound healing process for a short amount of time to be then discarded, certainly constitute good candidates in our quest for a more environmentally friendly management. Here, we propose a plant-based microfibrous scaffold, loaded with vitamin C (VitC), a bioactive molecule which acts as a protecting agent against UV damages and as a wound healing promoter. Fibers were fabricated via electrospinning from various zein/pectin formulations, and subsequently cross-linked in the presence of Ca2+ to confer them a hydrogel-like behavior, which we exploited to tune both the drug release profile and the scaffold degradation. A comprehensive characterization of the physico-chemical properties of the zein/pectin/VitC scaffolds, either pristine or cross-linked, has been carried out, together with the bioactivity assessment with two representative skin cell populations (human dermal fibroblast cells and skin keratinocytes, HaCaT cells). Interestingly, col-1a gene expression of dermal fibroblasts increased after 3 days of growth in the presence of the microfiber extraction media, indicating that the released VitC was able to stimulate collagen mRNA production overtime. Antioxidant activity was analyzed on HaCaT cells via DCFH-DA assay, highlighting a fluorescence intensity decrease proportional to the amount of loaded VitC (down to 50 and 30%), confirming the protective effect of the matrices against oxidative stress. Finally, the most performing samples were selected for the in vivo test on a skin UVB-burn mouse model, where our constructs demonstrated to significantly reduce the inflammatory cytokines expression in the injured area (50% lower than the control), thus constituting a promising, environmentally sustainable alternative to skin patches.


Assuntos
Queimaduras , Animais , Humanos , Masculino , Camundongos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Ascórbico/metabolismo , Materiais Biocompatíveis , Queimaduras/tratamento farmacológico , Linhagem Celular , Hidrogéis , Queratinócitos , Camundongos Endogâmicos C57BL , Cicatrização , Zeína/química , Zea mays/química
13.
ACS Appl Mater Interfaces ; 15(28): 33916-33931, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376819

RESUMO

Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.


Assuntos
Antozoários , Curcumina , Zeína , Animais , Antozoários/metabolismo , Curcumina/farmacologia , Antioxidantes/farmacologia , Clorofila/metabolismo , Recifes de Corais
14.
Langmuir ; 39(22): 7793-7803, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231662

RESUMO

An effective and sustainable approach to deal with the scarcity of freshwater is interfacial solar-driven evaporation. Nonetheless, some serious challenges for photothermal materials still need to be considered, such as long-term stability in harsh environments, eco-friendly materials, and cost-effective and simple fabrication processes. Keeping these points in mind, we present a multifunctional silver-coated vegetable waste biocomposite cryogel that not only exhibits high porosity and enhanced wettability and stability but also possesses high light absorption and low thermal conductivity favorable for heat localization, solar steam generation, and efficient photothermal conversion efficiency. The achieved solar evaporation rate is 1.17 kg m-2 h-1 with a solar-to-vapor conversion efficiency of 81.11% under 1 Sun irradiation. The developed material is able to effectively desalinate artificial seawater and decontaminate synthetic wastewater (e.g., water containing dye molecules and mercury ions) with an efficiency of >99%. Most importantly, the composite cryogel presents antifouling properties, and in particular, salt antifouling ability and anti-biofouling properties. Thus, the numerous functionalities of the biocomposite cryogel make it a cost-effective promising device for prolonged water decontamination processes.

15.
Int J Pharm ; 640: 123015, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37156308

RESUMO

Periodontal regeneration is extremely limited and unpredictable due to structural complications, as it requires the simultaneous restoration of different tissues, including cementum, gingiva, bone, and periodontal ligament. In this work, spray-dried microparticles based on green materials (polysaccharides - gums - and a protein - silk fibroin) are proposed to be implanted in the periodontal pocket as 3D scaffolds during non-surgical treatments, to prevent the progression of periodontal disease and to promote the healing in mild periodontitis. Arabic or xanthan gum have been associated to silk fibroin, extracted from Bombyx mori cocoons, and loaded with lysozyme due to its antibacterial properties. The microparticles were prepared by spray-drying and cross-linked by water vapor annealing, inducing the amorphous to semi-crystalline transition of the protein component. The microparticles were characterized in terms of their chemico-physical features (SEM, size distribution, structural characterization - FTIR and SAXS, hydration and degradation properties) and preclinical properties (lysozyme release, antibacterial properties, mucoadhesion, in vitro cells adhesion and proliferation and in vivo safety on a murine incisional wound model). The encouraging preclinical results highlighted that these three-dimensional (3D) microparticles could provide a biocompatible platform able to prevent periodontitis progression and to promote the healing of soft tissues in mild periodontitis.


Assuntos
Bombyx , Fibroínas , Periodontite , Camundongos , Animais , Fibroínas/química , Muramidase , Espalhamento a Baixo Ângulo , Difração de Raios X , Bombyx/metabolismo , Periodontite/tratamento farmacológico , Polissacarídeos , Antibacterianos/farmacologia , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Engenharia Tecidual
16.
Adv Mater ; 35(20): e2211400, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36919977

RESUMO

Edible electronics is a growing field that aims to produce digestible devices using only food ingredients and additives, thus addressing many of the shortcomings of ingestible electronic devices. Edible electronic devices will have major implications for gastrointestinal tract monitoring, therapeutics, as well as rapid food quality monitoring. Recent research has demonstrated the feasibility of edible circuits and sensors, but to realize fully edible electronic devices edible power sources are required, of which there have been very few examples. Drawing inspiration from living organisms, which use redox cofactors to power biochemical machines, a rechargeable edible battery formed from materials eaten in everyday life is developed. The battery is realized by immobilizing riboflavin and quercetin, common food ingredients and dietary supplements, on activated carbon, a widespread food additive. Riboflavin is used as the anode, while quercetin is used as the cathode. By encapsulating the electrodes in beeswax, a fully edible battery is fabricated capable of supplying power to small electronic devices. The proof-of-concept battery cell operated at 0.65 V, sustaining a current of 48 µA for 12 min. The presented proof-of-concept will open the doors to new edible electronic applications, enabling safer and easier medical diagnostics, treatments, and unexplored ways to monitor food quality.


Assuntos
Ingredientes de Alimentos , Quercetina/química , Eletrônica , Fontes de Energia Elétrica
17.
Lab Chip ; 23(6): 1576-1592, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688523

RESUMO

Biodegradable stent coatings have shown great potential in terms of delivering drugs to a damaged vessel wall, and their release profiles are key elements governing the overall performance of drug-eluting stents (DESs). However, release and degradation kinetics are usually not tested under simulated physiological conditions or in dynamic environments, both essential aspects in the design of novel DESs. To bridge this gap, fused silica-based microfluidic systems, with either round or square channel cross-sections, were designed to mimic the microenvironment of a stented vessel. In particular, we fabricated and characterized microfluidic chips based on customizable channels, which were spray-coated with a naturally-derived, rutin-loaded zein solution, to perform a comprehensive study under flow conditions. Dynamic assays after 6 hours showed how the degradation of the zein matrix was affected by the cross-sectional conformation (∼69% vs. ∼61%, square and round channel, respectively) and the simulated blood fluid components (∼55%, round channel with a more viscous solution). The released amount of rutin was ∼81% vs. ∼77% and ∼78% vs. ∼74% from the square and round channels, using the less and more viscous blood-simulated fluids, respectively. Fitting the drug release data to Korsmeyer-Peppas and first-order mathematical models provided further insight into the mechanism of rutin release and coating behavior under flowing conditions. More importantly, whole blood tests with our newly developed microfluidic platforms confirmed the hemocompatibility of our zein-based coating. In detail, in-flow and static studies on the blood cell behavior showed a significant reduction of platelet adhesion (∼73%) and activation (∼93%) compared to the stainless-steel substrate, confirming the benefits of using such naturally-derived coatings to avoid clogging. Overall, our microfluidic designs can provide a key practical tool for assessing polymer degradation and drug release from degradable matrices under flowing conditions, thus aiding future studies on the development of hemocompatible, controlled-release coatings for DESs.


Assuntos
Stents Farmacológicos , Zeína , Microfluídica , Estudos Transversais , Polímeros/química , Materiais Revestidos Biocompatíveis/química
18.
J Mater Sci Mater Med ; 34(1): 3, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36586059

RESUMO

Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration.


Assuntos
Fibroínas , Microgéis , Fibroínas/química , Encapsulamento de Células , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrogéis/química , Seda
19.
ACS Appl Nano Mater ; 5(10): 15272-15287, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36338329

RESUMO

The waste stream of low-grade wool is an underutilized source of keratin-rich materials with appropriate methods for upcycling into high value-added products still being an open challenge. In the present work, keratins were precipitated from their water solution to produce hierarchical keratin particles via isoelectric precipitation. Matrix-assisted laser desorption/ionization coupled with time-of-flight tandem mass spectrometry analysis (MALDI-TOF/TOF MS/MS) showed the presence of the amino acid sequence leucine-aspartic acid-valine (LDV) in the extracted keratin. This well-known cell adhesion motif is recognized by the cell adhesion molecule α4ß1 integrin. We showed that keratin particles had this tripeptide exposed on the surface and that it could be leveraged, via patterns obtained with microcontact printing, to support and facilitate dermal fibroblast cell adhesion and direct their growth orientation. The zeta potential, isoelectric point, morphological structures, chemical composition, and biocompatibility of keratin particles and the influence of the surfactant sodium dodecyl sulfate (SDS) were investigated. An appropriate ink for microcontact printing of the keratin particles was developed and micron-sized patterns were obtained. Cells adhered preferentially to the patterns, showing how this strategy could be used to functionalize biointerfaces.

20.
Nanoscale Horiz ; 8(1): 95-107, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36426604

RESUMO

Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.


Assuntos
Glioblastoma , Humanos , Eletricidade Estática , Engenharia Tecidual/métodos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Diferenciação Celular , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...