Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 41(4): 822-837, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34289522

RESUMO

Anthropogenic microfibers, a ubiquitous environmental contaminant, can be categorized as synthetic, semisynthetic, or natural according to material of origin and production process. Although natural fibers, such as cotton and wool, originated from natural sources, they often contain chemical additives, including colorants (e.g., dyes, pigments) and finishes (e.g., flame retardants, antimicrobial agents, ultraviolet light stabilizers). These additives are applied to textiles during production to give textiles desired properties like enhanced durability. Anthropogenically modified "natural" and semisynthetic fibers are sufficiently persistent to undergo long-range transport and accumulate in the environment, where they are ingested by biota. Although most research and communication on microfibers have focused on the sources, pathways, and effects of synthetic fibers in the environment, natural and semisynthetic fibers warrant further investigation because of their abundance. Because of the challenges in enumerating and identifying natural and semisynthetic fibers in environmental samples and the focus on microplastic or synthetic fibers, reports of anthropogenic microfibers in the environment may be underestimated. In this critical review, we 1) report that natural and semisynthetic microfibers are abundant, 2) highlight that some environmental compartments are relatively understudied in the microfiber literature, and 3) report which methods are suitable to enumerate and characterize the full suite of anthropogenic microfibers. We then use these findings to 4) recommend best practices to assess the abundance of anthropogenic microfibers in the environment, including natural and semisynthetic fibers. By focusing exclusively on synthetic fibers in the environment, we are neglecting a major component of anthropogenic microfiber pollution. Environ Toxicol Chem 2022;41:822-837. © 2021 SETAC.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Microplásticos , Têxteis , Águas Residuárias/química , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 285: 117653, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380229

RESUMO

Microplastics are ubiquitous in marine and estuarine ecosystems, and thus there is increasing concern regarding exposure and potential effects in commercial species. To address this knowledge gap, we investigated the effects of microplastics on larval and early juvenile life stages of the Black Sea Bass (Centropristis striata), a North American fishery. Larvae (13-14 days post hatch, dph) were exposed to 1.0 × 104, 1.0 × 105, and 1.0 × 106 particles L-1 of low-density polyethylene (LDPE) microspheres (10-20 µm) directly in seawater and via trophic transfer from microzooplankton prey (tintinnid ciliates, Favella spp.). We also compared the ingestion of virgin and chemically-treated microspheres incubated with either phenanthrene, a polycyclic aromatic hydrocarbon, or 2,4-di-tert-butylphenol (2,4-DTBP), a plastic additive. Larval fish did not discriminate between virgin or chemically-treated microspheres. However, larvae did ingest higher numbers of microspheres through ingestion of microzooplankton prey than directly from the seawater. Early juveniles (50-60 dph) were directly exposed to the virgin and chemically-treated LDPE microspheres, as well as virgin LDPE microfibers for 96 h to determine physiological effects (i.e., oxygen consumption and immune response). There was a significant positive relationship between oxygen consumption and increasing microfiber concentration, as well as a significant negative relationship between immune response and increasing virgin microsphere concentration. This first assessment of microplastic pollution effects in the early life stages of a commercial finfish species demonstrates that trophic transfer from microzooplankton can be a significant route of microplastic exposure to larval stages of C. striata, and that multi-day exposure to some microplastics in early juveniles can result in physiological stress.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Ingestão de Alimentos , Ecossistema , Pesqueiros , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 784: 147155, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088044

RESUMO

We report the first Canadian Arctic-wide study of anthropogenic particles (APs, >125 µm), including microfibers (synthetic, semi-synthetic and anthropogenically modified cellulose) and microplastics, in marine sediments from 14 sites. Samples from across the Canadian Arctic were collected between 2014 and 2017 from onboard the CCGS Amundsen. Samples were processed using density separation with calcium chloride (CaCl2). APs >125 µm were identified and a subset (22%) were characterized using Raman spectroscopy. Following blank-correction, microfiber numbers were corrected using Raman data in a novel approach to subtract possible "natural" cellulose microfibers with no anthropogenic signal via Raman spectroscopy, to estimate the proportion of cellulose microfibers that are of confirmed anthropogenic origin. Of all microfibers examined by Raman spectroscopy, 51% were anthropogenic cellulose, 11% were synthetic polymers, and 7% were extruded fibers emitting a dye signal. The remaining 31% of microfibers were identified as cellulosic but could not be confirmed as anthropogenic and thus were excluded from the final concentrations. Concentrations of confirmed APs in sediments ranged from 0.6 to 4.7 particles g-1 dry weight (dw). Microfibers comprised 82% of all APs, followed by fragments at 15%. Total microfiber concentrations ranged from 0.4 to 3.2 microfibers g-1 dw, while microplastic (fragments, foams, films and spheres) concentrations ranged from 0 to 1.6 microplastics g-1 dw. These concentrations may exceed those recorded in urban areas near point sources of plastic pollution, and indicate that the Canadian Arctic is a sink for APs, including anthropogenic cellulose fibers. Overall, we provide an important benchmark of AP contamination in Canadian Arctic marine sediments against which to measure temporal trends, including the effects of source reduction strategies and climate change, both of which will likely alter patterns of accumulation of anthropogenic particles.

4.
Appl Spectrosc ; 74(9): 1066-1077, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32394727

RESUMO

The ubiquitous pollution of the environment with microplastics, a diverse suite of contaminants, is of growing concern for science and currently receives considerable public, political, and academic attention. The potential impact of microplastics in the environment has prompted a great deal of research in recent years. Many diverse methods have been developed to answer different questions about microplastic pollution, from sources, transport, and fate in the environment, and about effects on humans and wildlife. These methods are often insufficiently described, making studies neither comparable nor reproducible. The proliferation of new microplastic investigations and cross-study syntheses to answer larger scale questions are hampered. This diverse group of 23 researchers think these issues can begin to be overcome through the adoption of a set of reporting guidelines. This collaboration was created using an open science framework that we detail for future use. Here, we suggest harmonized reporting guidelines for microplastic studies in environmental and laboratory settings through all steps of a typical study, including best practices for reporting materials, quality assurance/quality control, data, field sampling, sample preparation, microplastic identification, microplastic categorization, microplastic quantification, and considerations for toxicology studies. We developed three easy to use documents, a detailed document, a checklist, and a mind map, that can be used to reference the reporting guidelines quickly. We intend that these reporting guidelines support the annotation, dissemination, interpretation, reviewing, and synthesis of microplastic research. Through open access licensing (CC BY 4.0), these documents aim to increase the validity, reproducibility, and comparability of studies in this field for the benefit of the global community.


Assuntos
Microplásticos/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Qualidade da Água , Água/química , Guias como Assunto , Reprodutibilidade dos Testes
5.
Water Res ; 174: 115623, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088386

RESUMO

The sources of microplastics and other anthropogenic particles in freshwater are not well understood. The Greater Toronto Area, Canada's most populous urban area, offers a great study area for understanding the sources and pathways for microplastics to enter freshwater ecosystems. Here, we quantified and characterized microplastics and other anthropogenic particles from Lake Ontario surface waters and source waters (including stormwater runoff, agricultural runoff, and treated wastewater effluent) to better understand sources to the Great Lakes. Anthropogenic particle concentrations in lake samples were 0.8 particles L-1. In source waters, average concentrations were relatively higher in stormwater and wastewater, with 15.4 particles L-1 and 13.3 particles L-1, respectively, compared to 0.9 particles L-1 on average in agricultural runoff. Source waters revealed distinct signatures related to the morphologies of anthropogenic particles, e.g., fibers in wastewater. In addition, many upstream watershed characteristics were found to be significant predictors of anthropogenic particle concentration. Proximity to urban areas were positively correlated to anthropogenic particle concentrations. Future studies should focus on local source-apportionment to inform management and prevent further contamination of microplastics to freshwater ecosystems.


Assuntos
Lagos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Microplásticos , Ontário , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...