Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11719-11726, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38078825

RESUMO

Ionic transport through a graphene biomimetic subnanometer (sub-nm) pore of arbitrary shape and realistically decorated by intrinsic negatively charged sites is investigated by all-atom molecular dynamics (MD) simulations. In the presence of external electric fields, cation trapping-assisted translocation occurs in the vicinity of the 2D subnanometer pore, while the anion current is blocked by the negative charges. The adsorbed cations in such asymmetrically charged nanopores are located on the top of the nanopore instead of blocking the pore, as suggested previously in highly symmetric pores such as crown ethers. Our analysis of the different types of energy involved in ion translocations indicates that electrostatics is the dominant factor controlling ion transfer across these sub-nm pores. A physical model based on the thermionic emission formalism to account for the free energy barriers to ion flow reproduces the I-V characteristics.

2.
J Phys Chem Lett ; 13(16): 3602-3608, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35426690

RESUMO

Gating in ion transport is at the center of many vital living-substance transmission processes, and understanding how gating works at an atomic level is essential but intricate. However, our understanding and finite experimental findings of subcontinuum ion transport in subnanometer nanopores are still limited, which is out of reach of the classical continuum nanofluidics. Moreover, the influence of ion density on subcontinuum ion transport is poorly understood. Here we report the ion density-dependent dynamic conductance switching process in biomimetic graphene nanopores and explain the phenomenon by a reversible ion absorption mechanism. Our molecular dynamics simulations demonstrate that the cations near the graphene nanopore can interact with the surface charges on the nanopore, thereby realizing the switching of high- and low-conductance states. This work has deepened the understanding of gating in ion transport.


Assuntos
Grafite , Nanoporos , Biomimética , Transporte de Íons , Simulação de Dinâmica Molecular
3.
Microsyst Nanoeng ; 8: 27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310513

RESUMO

On-chip manipulation of charged particles using electrophoresis or electroosmosis is widely used for many applications, including optofluidic sensing, bioanalysis and macromolecular data storage. We hereby demonstrate a technique for the capture, localization, and release of charged particles and DNA molecules in an aqueous solution using tubular structures enabled by a strain-induced self-rolled-up nanomembrane (S-RuM) platform. Cuffed-in 3D electrodes that are embedded in cylindrical S-RuM structures and biased by a constant DC voltage are used to provide a uniform electrical field inside the microtubular devices. Efficient charged-particle manipulation is achieved at a bias voltage of <2-4 V, which is ~3 orders of magnitude lower than the required potential in traditional DC electrophoretic devices. Furthermore, Poisson-Boltzmann multiphysics simulation validates the feasibility and advantage of our microtubular charge manipulation devices over planar and other 3D variations of microfluidic devices. This work lays the foundation for on-chip DNA manipulation for data storage applications.

4.
ACS Nano ; 14(11): 16131-16139, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33155815

RESUMO

A systematic microscopic analysis of the various resistive effects involved in the electronic detection of single biomolecules in a nanopore of a MoS2 nanoribbon is presented. The variations of the transverse electronic current along the two-dimensional (2D) membrane due to the translocation of DNA and protein molecules through the pore are obtained by model calculations based on molecular dynamics (MD) and Boltzmann transport formalism, which achieved good agreement with the experimental data. Our analysis points to a self-consistent interaction among ions, charge carriers around the pore rim, and biomolecules. It provides a comprehensive understanding of the effects of the electrolyte concentration, pore size, nanoribbon geometry, and also the doping polarity of the nanoribbon on the electrical sensitivity of the nanopore in detecting biomolecules. These results can be utilized for fine-tuning the design parameters in the fabrication of highly sensitive 2D nanopore biosensors.


Assuntos
Técnicas Biossensoriais , Nanoporos , DNA , Molibdênio , Nanotecnologia
5.
Nat Commun ; 11(1): 1742, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269230

RESUMO

Synthetic DNA-based data storage systems have received significant attention due to the promise of ultrahigh storage density and long-term stability. However, all known platforms suffer from high cost, read-write latency and error-rates that render them noncompetitive with modern storage devices. One means to avoid the above problems is using readily available native DNA. As the sequence content of native DNA is fixed, one can modify the topology instead to encode information. Here, we introduce DNA punch cards, a macromolecular storage mechanism in which data is written in the form of nicks at predetermined positions on the backbone of native double-stranded DNA. The platform accommodates parallel nicking on orthogonal DNA fragments and enzymatic toehold creation that enables single-bit random-access and in-memory computations. We use Pyrococcus furiosus Argonaute to punch files into the PCR products of Escherichia coli genomic DNA and accurately reconstruct the encoded data through high-throughput sequencing and read alignment.


Assuntos
Proteínas Argonautas/metabolismo , DNA/genética , Análise de Sequência de DNA , Sequência de Bases , Pyrococcus furiosus/enzimologia
6.
J Phys Chem Lett ; 9(19): 5718-5725, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30226383

RESUMO

We use the electronic properties of 2D solid-state nanopore materials to propose a versatile and generally applicable biosensor technology by using a combination of molecular dynamics, nanoscale device simulations, and statistical signal processing algorithms. As a case study, we explore the classification of three epigenetic biomarkers, the methyl-CpG binding domain 1 (MBD-1), MeCP2, and γ-cyclodextrin, attached to double-stranded DNA to identify regions of hyper- or hypomethylations by utilizing a matched filter. We assess the sensing ability of the nanopore device to identify the biomarkers based on their characteristic electronic current signatures. Such a matched filter-based classifier enables real-time identification of the biomarkers that can be easily implemented on chip. This integration of a sensor with signal processing architectures could pave the way toward the development of a multipurpose technology for early disease detection.


Assuntos
Biomarcadores/metabolismo , Nanoporos , Algoritmos , Técnicas Biossensoriais , DNA/química , Condutividade Elétrica , Técnicas Eletroquímicas , Domínio de Ligação a CpG Metilada , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/metabolismo , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Semicondutores , gama-Ciclodextrinas/química
7.
ACS Sens ; 3(5): 1032-1039, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29663800

RESUMO

We describe a scalable device design of a dense array of multiple nanopores made from nanoscale semiconductor materials to detect and identify translocations of many biomolecules in a massively parallel detection scheme. We use molecular dynamics coupled to nanoscale device simulations to illustrate the ability of this device setup to uniquely identify DNA parallel translocations. We show that the transverse sheet currents along membranes are immune to the crosstalk effects arising from simultaneous translocations of biomolecules through multiple pores, due to their ability to sense only the local potential changes. We also show that electronic sensing across the nanopore membrane offers a higher detection resolution compared to ionic current blocking technique in a multipore setup, irrespective of the irregularities that occur while fabricating the nanopores in a two-dimensional membrane.


Assuntos
DNA/análise , Nanoporos , Semicondutores , Membranas Artificiais , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...