Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4032, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369532

RESUMO

The current study involves a synthesis of a composite of nickel oxide nanoparticles (NiONPs) with a chromium dopant to yield (Cr/NiONPs). Synthesis of nickel oxide was performed by the co-precipitation method. The synthesis of the composite was conducted by the impregnation method. FTIR, EDX, SEM, and XRD were used to characterize the synthesized materials. The synthesised materials' point zero charges (PZC) were performed using the potentiometric titration method. The obtained results show that the PZC for neat nickel oxide was around 5, and it was around 8 for Cr/NiONPs. The adsorption action of the prepared materials was examined by applying them to remove Reactive Red 2 (RR2) and Crystal Violate (CV) dyes from solutions. The outcomes demonstrated that Cr/NiONPs were stronger in the removal of dyes than NiONPs. Cr/NiONPs achieved 99.9% removal of dyes after 1 h. Adsorption isotherms involving Freundlich and Langmuir adsorption isotherms were also conducted, and the outcomes indicated that the most accurate representation of the adsorption data was offered by Langmuir adsorption isotherms. Additionally, it was discovered that the adsorption characteristics of the NiONPs and Cr/NiONPs correspond well with the pseudo-second-order kinetic model. Each of the NiONPs and Cr/NiONPs was reused five times, and the results display that the effectiveness of the removal of RR2 dye slightly declined with the increase in reuse cycles; it lost only 5% of its original efficiency after the 5 cycles. Generally, Cr/NiONPs showed better reusability than NiONPs under the same conditions.

2.
Anal Sci ; 40(4): 655-670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38261260

RESUMO

The elimination of pollutants such as dyes and fungi has become a tedious process hence there is a need for multifunctional materials that can be used for the removal or degradation of various pollutants from wastewater. Here, a nickel oxide nanoparticle (NiONPs) was synthesized by the co-precipitation method. In the current study, a composite of nickel oxide nanoparticles (NiONPs) was synthesized using nitrogen and chromium as dopants to create (N/NiONPs) and (Cr/N/NiONPs), respectively and used for the removal of dyes and fungi. The synthesized nanocomposites were characterized using zeta potential (ZP), scanning electron microscopy (SEM), X-rays diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The NiONPs, N/NiONPs and Cr/N/NiONPs were tested for the degradation of two dye pollutants, Reactive blue 13 (RB13) and eosin dye. The obtained results showed that Cr/N/NiONPs were more efficient than NiONPs and N/NiONPs for dye degradation by applying the same irradiation conditions. The Cr/N/NiONPs nanocomposites showed very good degradation efficiency of dye up to 94.2% for the RB13 and 90.8% for the eosin. We also examined the antifungal action of the NiONPs, N/NiONPs and Cr/N/NiONPs against Trichoderma fungus. The results showed that the Cr/N/NiONPs have an extremely strong antifungal impact on Trichoderma. This could be explained by the strong adhesion of Cr/N/NiONPs to the Trichoderma surface due to electrostatic attraction. This work has demonstrated that it is possible to create environmentally safe materials that can be used for the degradation of different dyes and the improvement of more effective antifungal treatments with lower active agent doses for fungus control with potential big economic benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...